
CANusb Layer 2 API
User Manual

Version 4.0 April 2002

SOFTING AG
Richard-Reitzner-Allee 6
D-85540 Haar, Germany
Telephone (++49) 89/4 56 56-0
Telefax (++49) 89/4 56 56-399
www.softing.com

http://www.softing.com/

 2002 SOFTING AG

No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed
using electronic systems in any form whatsoever without prior written
permission of SOFTING AG.
The producer reserves the right to make changes to the scope of supply as
well as changes to technical data, even without prior notice. A great deal of
attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed
for potential errors that might exist or for their effects. Should you find errors,
please inform your distributor of the nature of the errors and the
circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the
product, if necessary.

All rights reserved.

We call your attention to the fact that the company name and trademark as
well as product names are, as a rule, protected by trademark, patent and
product brand laws.  2000 - 2002 SOFTING AG
Printed in Germany 2002

HCN08E02 25.04.2002 RDF

Contents i

Contents

Preface 1
About this manual 1

1 Introduction 1-1
1.1 About CANusb 1-1

1.2 Scope of Application 1-2

1.3 Supported Systems 1-3

1.4 Scope of Delivery 1-4

2 How to Install CANusb 2-1
2.1 System Requirements 2-1

2.2 Installation 2-1

2.3 How to Test the Installation 2-2

2.4 Uninstall Support 2-3
2.4.1 Software 2-3

2.4.2 Hardware 2-3

3 Hardware Notes 3-1
3.1 Environmental Conditions 3-1

3.2 CAN Interface 3-2
3.2.1 Implementation 3-2

3.2.2 Bus Termination 3-2

3.2.3 Connector Pinning 3-3

ii Contents

4 Software Description 4-1
4.1 About the CANusb API 4-1

4.2 API Driver Concept 4-2

4.3 Operational Modes of the Interface 4-3
4.3.1 FIFO Mode 4-3

4.3.2 Dynamic Object Buffer Mode 4-5

4.3.3 Static Object Buffer Mode (only for 11-bit identifiers) 4-9

4.3.4 Comparison FIFO to Object Buffer Mode 4-13

4.4 Implementation 4-14
4.4.1 Board Initialization 4-14

4.4.2 CAN Initialization 4-14

4.4.3 Initialization of Operational Mode 4-16

4.4.4 Transmission 4-20

4.4.5 Receiving 4-21

4.4.6 Administration 4-22

4.4.7 Reinitialization 4-23

4.4.8 Exit board 4-23

4.5 API functions Reference 4-24
4.5.1 INIPC_initialize_board 4-24

4.5.2 CANPC_reset_board 4-26

4.5.3 CANPC_reset_chip 4-27

4.5.4 CANPC_get_version 4-28

4.5.5 CANPC_get_serial_number 4-30

4.5.6 CANPC_initialize_chip 4-31

4.5.7 CANPC_set_output_control 4-34

4.5.8 CANPC_set_acceptance 4-37

Contents iii

4.5.9 CANPC_enable_fifo 4-39

4.5.10 CANPC_set_rcv_fifo_size 4-40

4.5.11 CANPC_enable_timestamps 4-41

4.5.12 CANPC_enable_error_frame_detection 4-42

4.5.13 CANPC_enable_fifo_transmit_ack 4-43

4.5.14 CANPC_enable_dyn_obj_buf 4-44

4.5.15 CANPC_initialize_interface 4-45

4.5.16 CANPC_define_object 4-51

4.5.17 CANPC_set_interrupt_event 4-55

4.5.18 CANPC_start_chip 4-56

4.5.19 CANPC_send_data 4-57

4.5.20 CANPC_send_remote 4-58

4.5.21 CANPC_supply_object_data 4-59

4.5.22 CANPC_send_object 4-61

4.5.23 CANPC_write_object 4-63

4.5.24 CANPC_send_remote_object 4-65

4.5.25 CANPC_define_cyclic 4-67

4.5.26 CANPC_read_ac 4-69

4.5.27 CANPC_read_rcv_data 4-73

4.5.28 CANPC_get_time 4-75

4.5.29 CANPC_get_bus_state 4-76

4.5.30 CANPC_read_rcv_fifo_level 4-77

4.5.31 CANPC_reset_rcv_fifo 4-78

4.5.32 CANPC_reset_lost_msg_counter 4-79

4.5.33 CANPC_read_xmt_fifo_level 4-80

4.5.34 CANPC_reset_xmt_fifo 4-81

4.5.35 CANPC_supply_rcv_object_data 4-82

iv Contents

4.5.36 CANPC_read_xmt_data 4-84

4.5.37 CANPC_reinitialize 4-86

4.5.38 INIPC_close_board 4-86

5 Programming Notes 5-1
5.1 API Linking 5-1
5.1.1 General 5-1

5.1.2 MS Visual C/C++ 5-2

5.1.3 Borland C/C++/Builder 5-2

5.1.4 MS Visual Basic 5-3

5.1.5 Delphi 5-5

5.1.6 LABView 5-6

5.1.7 Others 5-6

5.2 Interrupt Processing 5-7
5.2.1 WIN32 Events 5-7

5.2.2 WIN32 Event Programming 5-7

5.3 Debugging Hint 5-8

5.4 Cyclic Transmission 5-9

5.5 Compatibility Note 5-10

6 Test program Can_test.exe 6-1
6.1 About the Test Program 6-1

6.2 Testing Installation and Communication 6-1

6.3 Sample Code 6-3

Contents v

7 Error Return Codes 7-1
7.1 INIPC_initialize_board 7-1

7.2 CANPC_reset_board 7-2

Glossary A-1

Index B-1

vi Contents

List of figures

Figure 3-1: Bus termination of the CAN Highspeed connection 3-2

Figure 3-2: Pinning of the 9-pin D-sub connector 3-3

Figure 4-1: Access structure of the API software 4-2

Figure 4-2: FIFO mode 4-4

Figure 4-3: Dynamic object buffer mode 4-8

Figure 4-4: Static object buffer mode 4-12

Figure 4-5: Main CAN programming sequence 4-15

Figure 4-6: Initialization sequence for FIFO mode 4-17

Figure 4-7: Initialization sequence for DOB mode 4-18

Figure 4-8: Initialization sequence for SOB mode 4-19

Figure 4-9: Bit period 4-32

Contents vii

List of tables

Table 3-1: 9-pin D-Sub connector acc. to CIA recommendation 3-3

Table 4-1: Functions of CAN initialization sequence 4-14

Table 4-2: Functions of operational mode initialization 4-16

Table 4-3: List of transmit functions 4-20

Table 4-4: List of receive functions 4-21

Table 4-5: List of administration functions 4-22

Table 4-6: Elements of structure CANPC_RESSOURCES 4-24

Table 4-7: Bit timing parameter 4-31

Table 4-8: Baud rate examples 4-33

Table 4-9: Output control Philips SJA1000 4-35

Table 4-10: Output control mode of Philips SJA1000 4-35

Table 4-11: Configuration of CAN output pins TX0 and TX1 4-36

Table 4-12: Filter parameters 4-37

Table 4-13: Function return codes of CANPC_read_ac 4-72

Table 7-1: Error codes of INIPC_initialize_board 7-1

Table 7-2: Error codes of CANPC_reset_board 7-2

viii Contents

Engineering notes:

Preface 1

Preface

About this manual
This user manual is written for users operating the CANusb
interface in Windows 98 / ME and Windows 2000 / XP.

It includes the following topics:

• Chapter 1 gives a common introduction about the product
and its application.

• In Chapter 2 the installation procedure of software and
hardware are described as well as the installed
components. Helpful notes support the uncomplicated
installation. A ‘Quick start’ is included.

• Chapter 3 describes the CANusb hardware. The main
functionality is explained and the I/O connectors are
defined.

• Chapter 4 includes the CAN Layer2 API function reference
as well as a description of the main operational modes and
their implementation sequences.

• Chapter 5 provides some helpful programming hints
regarding API linking, interrupt programming and cyclic
transmission.

• Useful information about the test and example program
‘Can_test.exe’ can be found in Chapter 6.

• Chapter 7 reports the error codes which may occur during
board initialization.

In addition to this user manual, always observe the Release
Notes contained in file README.TXT. This file resides on the
disk along with the setup program. The notes contain up-to-
date information concerning the present software version.

2 Preface

Engineering notes:

Introduction 1-1

1 Introduction

1.1 About CANusb
High performance hardware and software computer interfaces
are necessary to connect devices and components to CAN
(Controller Area Network). The CAN data streams must be
preprocessed and buffered at the CAN interface due to the
high real-time requirements of the CAN message traffic.

Nowadays, USB (Universal Serial Bus) systems become more
and more important due to their easy usage in mobile and
desktop PC’s.

The CANusb is an intelligent CAN interface board for IBM and
compatible computers with a USB port. Together with the
supplied driver libraries PC-based applications can easily be
integrated into CAN networks.

The CANusb interface:

• Offers an application interface to a single CAN network.

• Provides a physical layer according to ISO 11898 CAN
High Speed.

• Can be optionally equipped with another physical interface
(CAN Low Speed).

• Relieves applications of real-time-sensitive tasks while
receiving and transmitting CAN messages by means of
buffering and filtering.

• Executes the CAN access procedures directly on its own
processor. Thus, it provides good performance for time-
critical tasks.

• Provides bit rates up to 1Mbit

• Supports event driven processing and cyclic transmission

• Provides onboard timer with 1µs resolution

1-2 Introduction

• Is compatible to all CAN L2 APIs V4.x of CANcard2,
CANcard (NEC), CANcard-SJA, CAN-ACx, CAN-ACx-PCI
and CAN-ACx-104.

• Can be used with additional CAN standard software and
operating system drivers.

1.2 Scope of Application
Each CANusb is supplied with loadable onboard firmware and
a driver library to implement a PC application interface. The
library can be linked with the application programs and thus
allows the application access to the CAN network. The driver
library supports:

• Initialization of the CAN chip

• Transmission of data frames and remote frames with time
stamped confirmation (may use interrupts)

• Event-driven reception of time stamped data frames and
remote frames (may use interrupts)

• FIFO and object buffer operation

The CAN connection is implemented by the SJA1000 CAN
controller from Philips according to CAN specification 2.0B
(11bit and 29bit identifier).

The physical interface consists of an electrically isolated CAN
High Speed interfaces according to ISO 11898.

Connection to the CAN bus system is made through the 9-pin
D-Sub connector. The pin-out conforms to the CiA standard
(User Group: "CAN in Automation").

Introduction 1-3

1.3 Supported Systems
The CANusb L2 API functions are integrated in a 32bit DLL
according to standard calling convention. Thus, it is the basis
to support all compilers, measurement tools and visualization
systems which are able to provide access to 32bit Windows
DLLs, e.g.:

• Microsoft Visual C/C++ 4.0 (32bit) upwards1)

• Borland C/C++ 4.5 (32bit) upwards1)

• Borland C++ Builder 1.0 upwards1)

• Watcom C/C++ version 1.1 (Powersoft)1)

• Microsoft Visual Basic 5.0 upwards1)

• Delphi 2.0 upwards (Borland)1)

• LabVIEW 5.0 (National Instruments)1)

• LabWindows CVI 3.1 (National Instruments)1)

• HPVEE 4.01 (Hewlett Packard)1)

• Testpoint 3.3 (Keithley)1)

• WIZCON (PCSOFT)1)

• VISUA (SSS)1)

For examples and more information about the supported
systems please visit our homepage http://www.softing.com or
contact the technical support hotline (++49) 89/4 56 56-326.

1) All products mentioned are trademarks of their respective companies.

1-4 Introduction

1.4 Scope of Delivery
Before you begin to install the CANusb you should make sure
that all of the parts listed below are at hand.

The CANusb is delivered with the following components:

• CANusb interface supplied with Phillips SJA1000
(CAN 2.0B)

• USB cable (series A/B plugs)

• Compact disk with installation software and user manual
(PDF)

How to Install CANusb 2-1

2 How to Install CANusb

2.1 System Requirements
To run the CANusb interface your PC must meet the following
requirements:

• 100% IBM-compatible

• At least one available USB port

• Windows 98 / ME or Windows 2000 / XP running

• At least 1.5 MByte free on hard disk

Windows 2000
To enhance the stability of the system USB stack it is
recommended to install Service Pack 2 for Windows 2000.

2.2 Installation
1. Install the software by running ‘Setup.exe’ from installation

disk and follow the instructions. The installation of the
CANusb interface is processed within ‘Setup.exe’.

2. Start ‘\W32ApiDLL\Can_test.exe’ from the command line
and choose any operational mode

If the test program states ‘Chips are running’ the installation
was successful and the CANusb works properly. Quit the test
by pressing ‘q’ or proceed further tests (see Chapter 6).

If the test program returns any error code please refer to
Chapter 7.

NOTE:
Due to the PnP mechanism of Windows the CANusb
interface should not be plugged into the USB port before
the software installation. If the CANusb interface is
plugged in first the appearing installation assistant
should be closed by clicking the 'Cancel' button.

2-2 How to Install CANusb

2.3 How to Test the Installation
After installation of hardware and software the test program
‘Can_test.exe’ in ‘\W32ApiDLL’ directory of the installed
software can be executed from the command line to test the
installation:

1. Run ‘Can_test.exe’

2. After successful loading of the firmware the program states
version of hard- and software, chip types and serial number
of the device. Errors while initializing the interface are
stated with error number and text.

3. Input ‘i’ for interrupt mode and an operational mode of your
choice.

4. The program acknowledges success of interrupt
initialization and of the operational mode.

NOTE:
When the program prints ‘Chip is running’ the hardware
was successfully initialized. Thus, the installation works
properly.
5. Quit with ‘q’ or step to further tests (see Chapter 6).

How to Install CANusb 2-3

2.4 Uninstall Support

2.4.1 Software

After successful installation the ‘Add/Remove Software’ entry
in the ‘Control Panel’ includes the ‘Softing CANusb L2 API
V4.00’ entry. Double clicking this entry the ‘Unwise32.exe’ in
the ‘\Uninstall’ directory of the CANusb software is processed
and all steps of the preceding CAN L2 API installation are
undone.

2.4.2 Hardware

2.4.2.1 Windows 98 / ME

1. Plug in the CANusb interface into a free USB port.

2. Open the ‘System properties’ in the ‘Control Panel’ and
select the ‘Device Manager’ tab.

3. Select the CANusb interface within the
‘SoftingFieldbusInterface’ node with the right mouse button
and select ‘Remove’ from the pop-up menue.

4. Unplug the CANusb interface from the USB port.

Repeat this procedure for each installed CANusb interface.

2.4.2.2 Windows 2000 / XP

1. From the ‘Control Panel’ choose ‘Add/Remove Hardware’.

2. In the hardware assistant select ‘Uninstall/Unplug a device’
and then ‘Uninstall a device’.

3. If the CANusb interface is not plugged in activate the ‘Show
hidden devices’ checkbox below the device list.

4. Select the CANusb interface from the list and procceed with
the assistant.

5. Unplug the CANusb interface from the USB port.

Repeat this procedure for each installed CANusb interface.

2-4 How to Install CANusb

Engineering notes:

Hardware Notes 3-1

3 Hardware Notes

3.1 Environmental Conditions
For proper operation of the CANusb interface the following
environmental conditions have to be observed:

• Operating temperature 0...+55°C

• Non-operating temperature -25...+85°C

 (transport and storage)

• Relative humidity (non condensing) 5... 95%

• Range of air pressure 860...1060hPa (mbar)

• Power supplied by the USB-Bus +5V (4,6..5,5V), max.
310mA

3-2 Hardware Notes

3.2 CAN Interface

3.2.1 Implementation

The physical CAN interface is realized by the transceiver
PCA82C251 from Philips according to the CAN Highspeed
Specification (ISO11898). Optocouplers are used to
electrically isolate the signal lines Tx and Rx between the
transceiver and the CAN controller. The supply voltage for the
physical interface is provided by the PC via an isolated DC/DC
converter or from an externally connected physical interface.
Its ground potential is connected to PC ground via an RC
network of 1MΩ resistance and 10nF capacity. The CANusb
interface is connected to the CAN network via
D-SUB 9 connectors.

3.2.2 Bus Termination

The CAN High Speed bus should be terminated with 124 Ω
between CAN_H and CAN_L at each end of the network (see
Figure 3-1). This termination resistance is usually realized in
the network cable’s plug.

NOTE:
Invalid bus termination may cause communication errors.

CAN
Node

124Ω

CAN Network

CAN_H

CAN_L

CAN
Node

CAN
Node

124Ω

Figure 3-1: Bus termination of the CAN Highspeed connection

Hardware Notes 3-3

3.2.3 Connector Pinning

The D-Sub 9 connector’s pinning is defined according to the
CiA recommendation for the CAN High Speed (see Figure 3-2
and Table 3-1).

The shield is connected to earth via the PC housing. To
prevent high compensation currents due to earth loops, the
cable shield can be connected to pin 5 instead of the D-Sub 9
shield. This potential is connected to PC ground via an RC
network of 1MΩ resistance and 10nF capacity.

Table 3-1: 9-pin D-Sub connector acc. to CIA recommendation

Pin Signal
1 N.C.
2 CAN_L
3 Isolated GND (DCDC)
4 N.C.
5 Drain connected to connector shield

(1M/10n to isolated GND)
6 Isolated GND (DCDC)
7 CAN_H
8 N.C.
9 N.C.

Figure 3-2: Pinning of the 9-pin D-sub connector

3-4 Hardware Notes

Engineering notes:

Software Description 4-1

4 Software Description

4.1 About the CANusb API
The CANusb API (Application Programming Interface) is sup-
plied as a C function library for Windows 98 / ME and Win-
dows 2000 / XP.

Different operational modes of the interface can be configured:
FIFO and object buffer mode. Thus, the programmer is en-
abled to adapt it to the communication task in the most suit-
able way.

The CAN API is designed to be conform for all of Softing’s
CAN interfaces (PCMCIA, ISA, PCI, PC/104 etc.) and provides
the following functionality:

• Initialization of CAN parameters, e.g. bit rate, output control
and acceptance filter

• Transmission and reception of data and remote frames

• Message filtering

• Acknowledgment on successful transmission (optional)

• Automatic response to remote frames (optional)

• Error state detection

• Bus state detection

• Interrupt support

• Cyclic transmission

This chapter describes the basic operational modes, functions
and program sequences of the API. Practical hints for linking
and embedding are provided in Chapter 5.

4-2 Software Description

4.2 API Driver Concept
The API functions are supplied in the 32bit Windows DLL CA-
Nusb.dll. This API library accesses the CANusb interface via
the hardware driver canusbw.sys (see Figure 4-1).

The hardware driver is placed in the Windows system direc-
tory. We recommend to copy the API DLL CANusb.dll always
to the local directory of the application to prevent access er-
rors due to existence of API DLLs of different versions.

CAN
Network

Application (32bit)

API DLL
CANusb.dll

Hardware driver
canusbw.sys

USB bus Firmware

PC

CANusb

Figure 4-1: Access structure of the API software

Software Description 4-3

4.3 Operational Modes of the Interface
The CANusb interface together with its driver library offers two
alternative operating modes handling CAN messages: FIFO
operation and CAN object buffer. Furthermore, the object
buffer can be defined as static or dynamic. For initialization of
the operational modes see Chapter 4.4.3.

4.3.1 FIFO Mode

The communication between the CAN bus and the PC appli-
cation is processed via FIFO buffer (Figure 4-2). The message
that is entered first, is the next to be processed further. The
Transmit-FIFO bears a maximum of 1022 entries. The Re-
ceive-FIFO is configurable in size from 255 entries up to
65535.

NOTE:
The variable size of the Receive-FIFO is only supported
by the Layer 2 API for CANusb and not for the other CAN
interface types. (see Chapter 4.5.10 and 5.4)

4.3.1.1 Transmission Request

The Transmit-FIFO handles all transmit requests of the appli-
cation entered by CANPC_send_data.

If the Transmit-FIFO gets full new transmit requests are de-
nied and the application is informed by the error return code of
CANPC_send_data.

4.3.1.2 Transmit Acknowledge

Acknowledges on successful transmissions are transferred to
the application through the Receive-FIFO. They can be read
out of the FIFO using CANPC_read_ac.

The transmit acknowledges must be switched on by
CANPC_enable_fifo_transmit_ack during initialization (see
Figure 4-6). Otherwise, a successful transmission is not con-
firmed to the application.

4-4 Software Description

4.3.1.3 Received Messages

Received messages and bus events are transferred to the ap-
plication through the Receive-FIFO. They can be read out of
the FIFO using CANPC_read_ac.

Application

API

Firmware

CAN

Receive FIFO
(size 255
- 65535)

Transmit FIFO
(size 1022)

Transmit
requests

Transmit
request

Receive Events
Transmit ACK

Receive Events
Transmit ACK

Figure 4-2: FIFO mode

Software Description 4-5

4.3.2 Dynamic Object Buffer Mode

In dynamic object buffer mode the CAN messages and their
data are stored in two object lists, i.e. transmission and recep-
tion list (see Figure 4-3). It is possible at any time to read or
write the data of a defined object. Thus, the application always
has a consistent representation of a defined "CAN database".

The entries of the lists, i.e. CAN messages of interest, have to
be defined by the application using CANPC_define_object in
the initialization routine. An object includes identifier and data
of a CAN message. The API handles the objects referring their
object number which is returned by CANPC_define_object to
the application program. A maximum of 200 transmit and re-
ceive objects may be defined.

The handling of transmission requests, received messages,
transmit acknowledges and remote frames are individually
switched on or off for each object by definition (ReceiveIn-
tEnable, AutoRemoteEnable, TransmitAckEnable). The in-
terface offers two main handling mechanisms for these inter-
action tasks, FIFO or polling. The applied mechanism are cho-
sen and configured by CANPC_initialize_interface.

4.3.2.1 Transmission Request

A transmit request is commanded by CANPC_send_object or
CANPC_write_object.

If TransmitReqFifoEnable is set in CANPC_initialize_inter-
face, the transmit request for an object is transferred to the
CAN controller through a FIFO. The FIFO has a maximum of
255 entries. An overrun of the FIFO is recognized and re-
ported to the application.

Otherwise, the transmit object list is polled for objects to be
sent. Polling is processed from low to high object numbers.

4-6 Software Description

4.3.2.2 Transmit Acknowledge

On a successful transmission of an object a corresponding ac-
knowledge can be posted to the application. It is read by
CANPC_read_ac.

The acknowledges can be switched on or off for either all
objects (TransmitAckEnableAll) in CANPC_initialize_interface
and individually for each transmit object by definition (Trans-
mitAckEnable in CANPC_define_object).

If the transmit acknowledge FIFO is configured (TransmitAck-
FifoEnable), the transmit acknowledges are transferred
through a FIFO to the application. The FIFO has a maximum
of 255 entries. An overrun of the FIFO and the number of lost
transmit acknowledge messages are recognized, counted and
reported to the application.

Otherwise, the transmit object list is polled for acknowledged
objects. Polling is processed from low to high object numbers.

4.3.2.3 Received Messages

Calling CANPC_read_ac, the application is informed about re-
ception of objects and other bus events.

The report of a received object and triggering an interrupt to
the application can be switched on/off by definition (Re-
ceiveIntEnable) for filter functionality. The data of the received
object are entered into the receive object list in any case.

If a receive FIFO is configured (ReceiveFifoEnable), the re-
ceived objects and status messages are transferred through a
FIFO to the application. The FIFO has a maximum of 255 en-
tries. An overrun of the FIFO and the number of lost messages
are recognized, counted and reported to the application.

Otherwise, the receive object list is polled for received objects.
Polling is processed from low to high object numbers.

Software Description 4-7

4.3.2.4 Remote Frames

If automatic transmission on received remote frames is config-
ured by definition for an object (AutoRemoteEnable in
CANPC_define_object), the interface sends automatically a
data frame with the same identifier. Otherwise, the remote
frame is inserted into the object list and should be replied by
the application itself.

If FIFO for auto remote transmission is configured (Trans-
mitRmtFifoEnable in CANPC_initialize_interface), the incom-
ing remote frames are passed on for auto transmission
through a FIFO. The FIFO has a maximum of 255 entries. An
overrun of the FIFO and the number of lost remote transmit
requests are recognized, counted and reported to the applica-
tion.

Otherwise, the remote request is stored in the transmit object
list, which is polled for transmission of data frames. Polling is
processed from low to high object numbers.

NOTE:
The remote frame is only answered automatically after
the first call of CANPC_supply_object_data or
CANPC_write_object for the related object. This assures
that no non-initialized data are transmitted.

4-8 Software Description

Application

API

Transmit object list

(max. 200 entries)

Receive object list

(max. 200 entries)

Transmit
ACK

Object
data

FIFO or
Polling

FIFO or
Polling

Receive
Events

Object
data

FIFO or
Polling

Firmware

Transmit
requests

Receive
Events

CAN

Transmit
ACK

Transmit
requests

Figure 4-3: Dynamic object buffer mode

Software Description 4-9

4.3.3 Static Object Buffer Mode (only for 11-bit identifiers)

In static object buffer mode the CAN messages and their data
are stored in 2 object lists, one for transmission and one for
reception (see Figure 4-4).

In opposition to the dynamic object buffer, the object lists hold
all 2048 standard CAN identifiers (11 bit format according to
CAN 2.0A spec.). The objects of these lists can be optionally
defined by the application using CANPC_define_object.
Hence, an individual configuration of the handling for each
object can be obtained.

It is possible to access the object data at any time. Thus, the
application always has a consistent representation of the
complete "CAN database" (only for CAN 2.0A spec.).

The handling of transmission requests, received messages,
transmit acknowledges and remote frames can be configured
individually by the application using
CANPC_initialize_interface. The interface offers two main
mechanisms for these interaction tasks, FIFO or polling.

4.3.3.1 Transmission Request

A transmit request is commanded by CANPC_send_object or
CANPC_write_object.

If the transmit FIFO is configured (TransmitReqFifoEnable),
the transmit request for an object is transferred to the CAN
controller through a FIFO. Otherwise, the transmit object list is
polled for objects to be sent. This polling can be limited to
those transmit objects defined using CANPC_define_object.
Otherwise, all transmit objects are polled (TransmitPollAll).

The FIFO has a maximum of 255 entries. An overrun of the
FIFO is recognized and reported to the application.

Polling is processed from low to high identifiers.

4-10 Software Description

4.3.3.2 Transmit Acknowledge

On successful transmission of an object a corresponding ac-
knowledge can inform the application by using
CANPC_read_ac.

The acknowledges can be switched on or off for either all ob-
jects (TransmitAckEnableAll) or for each transmit object by
definition (TransmitAckEnable).

If the transmit acknowledge FIFO is configured (TransmitAck-
FifoEnable), the transmit acknowledges of an object are
transferred through a FIFO to the application. Otherwise, the
transmit object list is polled for acknowledged objects.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost transmit acknowledge messages
are recognized, counted and reported to the application.

Polling is processed from low to high object numbers.

4.3.3.3 Received Messages

By calling CANPC_read_ac the application is informed about
reception of objects and other bus events.

If ReceiveEnableAll is set, all data and remote frames are re-
ceived by the interface. Otherwise, the user can define the
objects to be received (CANPC_define_object).

Furthermore, the report of a received object to the application
and generation of an interrupt can be switched on/off either
globally (ReceiveIntEnableAll) or individually by definition (Re-
ceiveIntEnable). The data of the received object are entered
into the receive object list in any case.

If FIFO mode is configured (ReceiveFifoEnable), the received
objects and status messages are transferred through a FIFO
to the application. Otherwise, the receive object list is polled
for received messages.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost messages are recognized,
counted and reported to the application.

Software Description 4-11

Polling is processed from low to high identifiers and can be
limited to those receive objects defined using
CANPC_define_object. Then the objects are polled in succes-
sion of their definition. Otherwise, all receive objects are polled
(ReceivePollAll).

4.3.3.4 Remote frames

If automatic transmission on a reception of a remote frame is
configured by definition for an object (AutoRemoteEnable) or
globally (AutoRemoteEnableAll), the interface sends automati-
cally a data frame with the same identifier. Otherwise, the re-
mote request is stored in the transmit object list, which is
polled for transmission of data frames.

If the FIFO for auto remote transmission is configured (Trans-
mitRmtFifoEnable), the incoming remote frames are passed
on for auto transmission through a FIFO. Otherwise, they are
stored in the object list, which is polled for transmission of data
frames.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost remote transmit requests are
recognized, counted and reported to the application.

NOTE:
The remote frame is only answered automatically after
the first call of CANPC_supply_object_data or
CANPC_write_object for the related object. This assures
that no non-initialized data are transmitted.

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their identi-
fiers in order to make prioritization of objects with low
identifiers the same as on the CAN bus. This is true for
static as well as for dynamic object buffer mode.

4-12 Software Description

Application

API

Transmit object
list CAN1

(2048 entries)

Receive object
list CAN1

(2048 entries)

Firmware

CAN

FIFO or
Polling

Receive
Events

Object
data

Transmit
ACK

FIFO or
Polling

Object
data

FIFO or
Polling

Transmit
requests

Receive Events
Transmit ACK

Figure 4-4: Static object buffer mode

Software Description 4-13

4.3.4 Comparison FIFO to Object Buffer Mode

The advantage of object buffer compared to FIFO operation is
that the last received data of an object are always available to
the application in all cases. Even though, if older receptions
still have not been processed. No data are lost if an overrun of
the object received message FIFO occurs.

When the transmit request FIFO is full the data can be buff-
ered, and the application is freed of this task. Hence, the
transmit request is denied but the data are buffered anyway.

It is possible at any time to read out or write in the receive and
transmit objects. Thus, the application always has access to
the provided CAN database.

An additional advantage of the object buffer is that data of ob-
jects are available to the application very quickly after they are
received from the bus, even if the application still has not
processed older messages. Accordingly, messages can be
transmitted before lower priority messages, even if the lower
priority messages were requested first. This is true if the object
buffer is operated in polling mode.

FIFO operation offers the advantage that data of an object or
an identifier are not overwritten by other received data of the
same object until they are evaluated by the application (over-
run). Therefore, when transmitting, a sequence of data of an
object can be buffered and transmitted.

Furthermore, FIFO provides full access to all identifiers possi-
ble, even for extended identifier. No relation between identifier
and defined object number has to be processed by the appli-
cation.

4-14 Software Description

4.4 Implementation
The CANusb has to be programmed in a specific sequence of
instructions for proper operation. Figure 4-5 shows the main
flow chart for CAN access with the API.

4.4.1 Board Initialization

After program start the CAN interface must be initialized by
INIPC_initialize_board. Second CANPC_reset_board has to
be called to download the firmware.

4.4.2 CAN Initialization

The CAN chip is placed into reset status using
CANPC_reset_chip. Subsequently, CAN specific parameters
are initialized using CANPC_initialize_chip for bit timing,
CANPC_set_acceptance for filtering CAN messages and
CANPC_set_output_control for the physical signal specifica-
tion. Optionally, some SW and HW information can be ac-
cessed by CANPC_get_serial_number and
CANPC_get_version.

All functions (see Table 4-1) can be programmed in any suc-
cession.

Table 4-1: Functions of CAN initialization sequence

Function Application
CANPC_initialize_chip necessary
CANPC_set_acceptance necessary
CANPC_set_output_control necessary
CANPC_get_serial_number optional
CANPC_get_version optional

Software Description 4-15

INIPC_initialize_board

Main

CANPC_reset_board

Transmission
(Table 4-3)

Monitoring
(Table 4-4)

Administration
(Table 4-5)

Reinitialize?

Exit ?

INIPC_close_board

Exit

Resource initalization

Firmware download

CAN controller and
firmware reset

Set CAN parameter

Selection and
configuration of the
operational mode

Get HW/SW info

Start of operation

y

y

n

n

Clear resources

Initialization of
operational mode
(Fig. 4-6, 4-7, 4-8)

(Table 4-2)

CANPC_start_chip

CAN initialization
(Table 4-1)

CANPC_reset_chip

CANPC_reinitialize

Figure 4-5: Main CAN programming sequence

4-16 Software Description

4.4.3 Initialization of Operational Mode

After the CAN specific initialization the operational mode is to
be configured as FIFO, dynamic (DOB) or static object buffer
(SOB). The function CANPC_enable_fifo must be called to
enable the FIFO mode. Otherwise, the object buffer is chosen
which can be defined to be dynamically by
CANPC_enable_dyn_obj_buf (see Figure 4-6 to Figure 4-8).

The chosen operational mode is configured by necessary and
optional functions listed in Table 4-2. Usage and parameter
sets are explained in Chapter 4.3 and 4.5.

If an WIN32 interrupt is used, it is configured by
CANPC_set_interrupt_event. This function may be called at
any time of the program but is preferably placed within the ini-
tialization routine.

The function CANPC_start_chip ends the initialization and
places the CAN controller in operating status. From this point
onwards transmit jobs can be issued and incoming data can
be monitored.

Table 4-2: Functions of operational mode initialization

ApplicationFunction
FIFO DOB SOB

CANPC_enable_fifo x - -
CANPC_enable_dyn_obj_buf - x -
CANPC_set_rcv_fifo_size o - -
CANPC_enable_fifo_transmit_ack o - -
CANPC_enable_error_frame_detection o - -
CANPC_initialize_interface - x x
CANPC_define_object - x o
CANPC_set_interrupt_event o o o

x: necessary o: optional -: not possible

Software Description 4-17

4.4.3.1 FIFO Mode Specific Configuration Functions

As an option, the stack can be initialized to confirm successful
transmissions to the application
(CANPC_enable_fifo_transmit_ack).

To overcome larger delays in processing the received mes-
sages the Receive-FIFO can be expanded optionally by
CANPC_set_rcv_fifo_size.

Furthermore the error frame detection can be enabled by
CANPC_enable_error_frame_detection.

Optional configuration of

Initialization of
FIFO mode

CANPC_enable_fifo

Terminator

Choosing FIFO mode

- report about successful
transmission (ACKN) CANPC_enable_fifo_transmit_ack

- error frame detection CANPC_enable_error_frame_detection

- WIN 32 event CANPC_set_interrupt_event

- size of Receive-FIFO CANPC_set_rcv_fifo_size

Figure 4-6: Initialization sequence for FIFO mode

4-18 Software Description

4.4.3.2 Object Buffer Mode Specific Configuration Functions

The operating modes of object buffer are enabled using
CANPC_initialize_interface. Beforehand the object buffer can
be switched to dynamic object buffer (see Figure 4-7) by call-
ing CANPC_enable_dyn_obj_buf. Otherwise the static object
buffer is chosen by default (see Figure 4-8).

Object specific settings are made by calling
CANPC_define_object. The object definition is necessary in
dynamic object buffer mode but optional in static object buffer
mode.

Initialization of
DOB mode

CANPC_enable_dyn_obj_buf

CANPC_set_interrupt_event

Terminator

CANPC_initialize_interface

CANPC_define_object

Choose DOB

Configuration of object
buffer

Definition of the
communication objects

Optional WIN32
interrupt initialization

Figure 4-7: Initialization sequence for DOB mode

Software Description 4-19

Initialization of
SOB mode

CANPC_set_interrupt_event

Terminator

CANPC_initialize_interface

CANPC_define_object

Configuration of the
object buffer

Optional re definition of the
communication objects

Optional WIN32
interrupt initialization

Figure 4-8: Initialization sequence for SOB mode

4-20 Software Description

4.4.4 Transmission

The API enables the application to transmit data and remote
frames with standard or extended identifier. Identifier length
and value, data length and data contents are selectable at
customers choice.

Table 4-3 lists all functions for transmission purposes and their
valid operational mode. Usage and parameter sets of the
functions are explained in Chapter 4.3 and 4.5.

Table 4-3: List of transmit functions

ApplicationFunction
FIFO DOB SOB

CANPC_send_data o - -
CANPC_send_remote o - -
CANPC_supply_object_data - o o
CANPC_send_object - o o
CANPC_write_object - o o
CANPC_send_remote_object - o o
CANPC_define_cyclic - o -

x: necessary o: optional -: not possible

Software Description 4-21

4.4.5 Receiving

The API enables the application to receive data and remote
frames with standard or extended identifier. Also acknowl-
edges of successful transmissions are reported if configured
during initialization (see Chapter 4.3). Identifier length and
value, data length and data contents of the related frames as
well as the event time can be monitored.

Table 4-4 lists all functions for frame receiving and their valid
operational modes. Usage and parameter sets of the functions
are explained in Chapters 4.3 and 4.5.

To monitor the bus events CANPC_read_ac or
CANPC_read_rcv_data should be polled in a loop or have to
be implemented in a event controlled thread/service routine.

NOTE:
In object buffer mode the event service routine should
not interrupt any API function since this may cause false
function return codes .

Table 4-4: List of receive functions

ApplicationFunction
FIFO DOB SOB

CANPC_read_ac o o o
CANPC_read_rcv_data - o o

x: necessary o: optional -: not possible

4-22 Software Description

4.4.6 Administration

The API provides numerous functions to support the customer
in analyzing and administrating the operational state of the bus
and/or the interface. Beside the status information of
CANPC_read_ac following services can be accessed:

- Evaluation of the onboard time and bus states

- Evaluation and reset of the FIFO levels and the lost mes-
sage counter in FIFO mode

- Evaluation of current transmit object data and presetting of
receive object data

Table 4-5 lists all functions for these tasks and their valid op-
erational mode. Usage and parameter sets of the functions are
explained in Chapters 4.3 and 4.5.

Table 4-5: List of administration functions

Function Application
FIFO DOB SOB

CANPC_get_time o o o
CANPC_get_bus_state o o o
CANPC_read_rcv_fifo_level o - -
CANPC_reset_rcv_fifo o - -
CANPC_reset_lost_msg_counter o - -
CANPC_read_xmt_fifo_level o - -
CANPC_reset_xmt_fifo o - -
CANPC_supply_rcv_object_data - o o
CANPC_read_xmt_data - o o

x: necessary o: optional -: not possible

Software Description 4-23

4.4.7 Reinitialization

Often it is necessary to change object settings or CAN pa-
rameters or simply to reset the CAN controller from Bus-Off
state. In this case the flow chart can be reentered at
CANPC_reset_chip by calling CANPC_reinitialize (Figure 4-5).
The operational mode (firmware) as well as the CAN parame-
ters are reset by CANPC_reset_chip. Subsequently, calling
this function requires again calling of the initialization functions
and CANPC_start_chip.

4.4.8 Exit board

The application should be finished only after calling
INIPC_close_board. This function releases the system re-
sources locked for the application by INIPC_initialize_board.

4-24 Software Description

4.5 API functions Reference

4.5.1 INIPC_initialize_board

int INIPC_initialize_board(

CANPC_RESSOURCES cp_resources)

The resources required by the CANusb are enabled using
INIPC_initialize_board. Thus, it must be called before any
other API function.

If the function fails it returns an error code which corresponds
to the error cause. The error codes of INIPC_initialize_board
are documented in the header file Canlay2.H.

The distinction is done by uSocket and ulDPRAMMemBase of
CANPC_RESSOURCES (see Table 4.6).

Function Parameters:

Table 4-6: Elements of structure CANPC_RESSOURCES

Type/Name Description
Select CANusb interface.

0xFFFF: Take first CANusb in-
terface found by the
driver.

unsigned short
uSocket

0x0: Device selected by its
serial number in ulD-
PRAMMemBase.

unsigned short
uInterrupt

Not used.

unsigned long
uIDPRAMemBase

Serial number of the CANusb in-
terface.
(only used with uSocket=0x0)

unsigned long
uIDPRMemSize

Not used.

Software Description 4-25

ChipType
uChip

Not used.

unsigned short
uIOAdress

Not used.

unsigned short
uRegisterBase

Not used.

Function Return Codes:

0: Initialization successful
others: See Canlay2.h and Chapter 7

4-26 Software Description

4.5.2 CANPC_reset_board

int CANPC_reset_board(void)

CANPC_reset_board loads and resets the firmware on the in-
terface. The firmware is included in the API DLL. If the firm-
ware download fails the function returns an error code which
corresponds to the error cause. The error codes of
CANPC_reset_board are documented in Chapter 7.

Function Return Codes:

0: Loading and reset successful
Others: see Chapter 7

Software Description 4-27

4.5.3 CANPC_reset_chip

int CANPC_reset_chip(void)

This function terminates a possible bus operation and places
the CAN chip into reset status. It also performs a firmware re-
set.

After the reset the bit timing, acceptance register, output con-
trol register and operational mode have to be configured be-
fore the CAN controller is started by CANPC_start_chip.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-28 Software Description

4.5.4 CANPC_get_version

int CANPC_get_version(

int *sw_version,
int *fw_version,
int *hw_version,
int *license,
int *can_chip_type);

This function provides information about the version numbers
of hard-, soft- and firmware, license and CAN chip type of the
CANusb interface.

It can be called optionally after the firmware and the CAN
controller is reset by CANPC_reset_chip but before starting
the operation by CANPC_start_chip.

Function Parameters:

• sw_version:
 Pointer to the entry of the version number of the API software.

 The number is encoded as *sw_version / 100 as the main ver-
sion number; *sw_version % 100 refers to the subordinate part
of the number.

• fw_version:
 Pointer to the entry of the version number of the firmware.

 The number is encoded as *fw_version / 100 as the main ver-
sion number; *fw_version % 100 refers to the subordinate part
of the number.

• hw_version:
 Pointer to the entry of the version number of the hardware.

 The number is encoded as *hw_version % 0x100H as the
main version number; *hw_version / 0x100H refers to the sub-
ordinate part of the number.

Software Description 4-29

• licence:
 Pointer entry of the license type of the CANusb interface

 01H: Licensed for operation with interface soft-
ware

• can_chip_type:
Pointer to entry containing the identifying digits of the CAN
chip type.

can_chip_type[0]: CAN 1
can_chip_type[1]: CAN 2 (not valid for CANusb)

0x1000: SJA1000

0x0: No chip (e.g. CAN2)

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-602: Unable to open USB pipe.

Restart or re-plug the CANusb.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-30 Software Description

4.5.5 CANPC_get_serial_number

int CANPC_get_serial_number(

unsigned long *SerialNumber)

This function returns the serial number of the CANusb inter-
face in *SerialNumber. It can be called after firmware and CAN
controller reset by CANPC_reset_chip.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-31

4.5.6 CANPC_initialize_chip

int CANPC_initialize_chip(

int presc,
int sjw,
int tseg1,
int tseg2,
int sam)

Function Parameters:

Table 4-7: Bit timing parameter

Name Description Range
presc CAN-Prescaler [1..32]
sjw CAN-Synchronisation-Jump-Width [1..4]
tseg1 CAN-Time-Segment 1 [1..16]
tseg2 CAN-Time-Segment 2 [1..8]
sam Number of samples [0, 1]

These functions define the bit timing (baud rate) of the CAN
chip. Parameters presc, sjw, tseg1 and tseg2 represent logical
values that are used to describe the bit timing. These values
are converted and written to the bus timing register 1 and 2 of
the Philips SJA1000.

The baud rate is calculated by the following formula, whereby
certain limit conditions must be maintained:

fcrystal
Baud rate = ---

2 * presc * (1 + tseg1 + tseg2)

The crystal frequency fcrystal is 16 MHz.

4-32 Software Description

The limitations of the bit timing of the used CAN controllers
lead to following conditions:

8 ≤ (1+ tseg1 + tseg2) ≤ 25

tseg1 + tseg2 ≥ 2 * sjw

tseg2 ≥ sjw

The prescaler divides the crystal frequency by presc to build
the clock cycle time ∆t.

The parameter sam defines how many samples are taken to
detect the bit level.

sam = 0 → 1 sample (high speed buses)

sam = 1 → 3 samples (low/medium speed buses)

The sampling point is defined at the edge between time seg-
ment 1 and time segment 2. It is recommended to place the
sampling point between 50% and 80% of the bit time. At high
baud rates the communication is more stable if the sample is
taken in the last quarter of the bit time.

The synchronization jump width is used to compensate the
time shifts between the different CAN nodes in the network. It
defines the maximum number sync of clock cycles by which
the time segment 1 may be lengthened and time segment 2
shortened during resynchronization.

Bit time

∆t

Tseg1 Tseg2

Sync.
Seg.

Sample point(s)

time

Figure 4-9: Bit period

Software Description 4-33

Table 4-8: Baud rate examples

baud rate presc sjw tseg1 tseg2
1 Mbaud 1 1 4 3
800 kBaud 1 1 6 3
500 kBaud 1 1 8 7
250 kBaud 2 1 8 7
125 kBaud 4 1 8 7
100 kBaud 4 4 11 8
10 kBaud 32 4 16 8

Function Return Codes:

 0: Initialization successful
-1: Parameter error
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-34 Software Description

4.5.7 CANPC_set_output_control

int CANPC_set_output_control (int OutputControl)

Function Parameters:

Input/Output-Control-Register
[0 to FFHex or –1]

Default:
(CAN high-speed)

0xFB or -1

- OutputControl:

No ACKN:
(only listening)

0x03

This function defines the setting of the Output Control Register
(OCR) of the CAN chip. This is used to adapt the CAN chip to
the physical bus interface being used.

If the CANusb with CAN controller Philips SJA1000 is used
with the CAN High Speed interface (default) the output control
register must be set to a value of FAHex or FBHex. If you like
to adapt the interface to a different bus physic consult the SJA
data sheet for the required OCR setting. The OCR specifica-
tion of the Philips SJA1000 is described in Table 4-9 to 4-12.

Setting the OCR=03H switches off the transmission lines Tx0
and Tx1 of the CAN controller. Hence, the CANusb can’t send
any data frame or any acknowledge bit on received messages.
Thus, the interface can monitor the activities on the CAN net-
work without influencing it. Choosing the default values for
CAN High automatically by passing the default parameter –1
assures compatibility with Softing’s other CAN interfaces using
CAN High Speed Standard.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.

Software Description 4-35

-603: Communication via USB pipe broken.
Restart or re-plug the CANusb.

-605: Internal driver error

Output control specification of Philips SJA1000:
The voltage levels at the CAN outputs TX0 and TX1 depend
on both the output configuration, which is determined by
OCTPx and OCTNx, and the output polarity, which is deter-
mined by OCPOLx (see Table 4-11).

Table 4-9: Output control Philips SJA1000

Bit Function
7 OCTP1
6 OCTN1
5 OCPOL1
4 OCTP0
3 OCTN0
2 OCPOL0
1 OCMODE1
0 OCMODE0

Table 4-10: Output control mode of Philips SJA1000

OCMODE1 OCMODE0 Function
1 0 Normal Mode (TX0 and TX1

CAN Output)
1 1 Normal mode (Tx0 CAN Output,

TX1 Bus Clock)
0 x not implemented

4-36 Software Description

Table 4-11: Configuration of CAN output pins TX0 and TX1

Operating
Mode

O
C
T
P
x

O
C
T
N
x

O
C
P
O
L
x

TXD TPx TNx Level at TXx

FLOAT 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

off
off
off
off

off
off
off
off

high resistance
high resistance
high resistance
high resistance

PULL
DOWN

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

off
off
off
off

on
off
off
on

logic "0"
high resistance
high resistance
logic "0"

PULL UP 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

off
on
on
off

off
off
off
off

high resistance
logic "1"
logic "1"
high resistance

PUSH
PULL

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

off
on
on
off

on
off
off
on

logic "0"
logic "1"
logic "1"
logic "0"

TXx: Output pin x, x=0 for TX0, x=1 for TX1

TPx: Transistor that switches from supply voltage to TXx

TNx: Transistor that switches from TXx to ground

TXD: Data to be transmitted, 0=dominant, 1=recessive

Software Description 4-37

4.5.8 CANPC_set_acceptance

int CANPC_set_acceptance(

unsigned int AccCodeStd,
unsigned int AccMaskStd,
unsigned long AccCodeXtd,
unsigned long AccMaskXtd)

The function CANPC_set_acceptance initializes the accep-
tance filter of the CAN controller. The acceptance filter de-
fines which identifiers should be passed into the receive buffer
of the CAN controller. To receive an identifier all bits of the
identifier that were initialized as 1 in the acceptance mask
must match the corresponding bit in the acceptance code. A
"0" in the acceptance mask register means "Don't care" for the
identifier bit at this position.

Table 4-12: Filter parameters

Name Description Range
AccCodeStd: Acceptance code for

standard frames
[0 to 7FFHex]

AccMaskStd: Acceptance mask for
standard frames

[0 to 7FFHex]

AccCodeXtd: Acceptance code for
extended frames

[0 to 1FFFFFFFHex]

AccMaskXtd: Acceptance mask for
extended frames

[0 to 1FFFFFFFHex]

4-38 Software Description

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-39

4.5.9 CANPC_enable_fifo

int CANPC_enable_fifo(void)

FIFO operation of the interface is activated calling this function
If this function is not used, then the CANusb operates with an
object buffer mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-40 Software Description

4.5.10 CANPC_set_rcv_fifo_size

int CANPC_set_rcv_fifo_size(int FifoSize)

To accommodate to larger delays in processing the received
messages the Receive-FIFO in FIFO mode is configurable in
size. CANPC_set_rcv_fifo_size must be called if other sizes
than the default size of 255 entries is to be used.

NOTE:
This function is only applicable in FIFO mode. It is only
supported by the Layer 2 API for CANusb.
Function Parameters:

- FifoSize:
The value defines the size of the Receive-FIFO as defined in
the following table:

Value No of entries
0 255 (default)
1 511
2 1023
3 2047
4 4095
5 8191
6 16383
7 32767
8 65535

Software Description 4-41

Function Return Codes:

 0: Function successful
-1: Parameter error
-2: FIFO mode not enabled
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.

4.5.11 CANPC_enable_timestamps

int CANPC_enable_timestamps(void)

This is a dummy function which is only necessary to provide
API compatibility to the CAN-AC2 ISA interface.

Function Return Codes:

 0: Function successful

4-42 Software Description

4.5.12 CANPC_enable_error_frame_detection

int CANPC_enable_error_frame_detection(void)

This function enables the detection of error frames by the ap-
plication. Receiving an error frame sets the function return
value of CANPC_read_ac to 15.

NOTE:
Error frame detection is only available in FIFO mode.

Function Return Codes:

 0: Function successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-43

4.5.13 CANPC_enable_fifo_transmit_ack

int CANPC_enable_fifo_transmit_ack(void)

CANPC_enable_fifo_transmit_ack enables the reporting of
successful transmit jobs (acknowledge) in FIFO mode to the
PC application.

If a transmission of a data or remote frame is acknowledged
by another CAN device a related message for the application
is entered into the receive FIFO and the interrupt is set.
Reading the receive FIFO by CANPC_read_ac the acknowl-
edges are reported by a special function return value.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-44 Software Description

4.5.14 CANPC_enable_dyn_obj_buf

int CANPC_enable_dyn_obj_buf(void)

CANPC_enable_dyn_obj_buf configures the API to run in dy-
namic object buffer mode (see Chapter 4.3.2). If this function
is not used, then the CANusb is operates with the static object
buffer or in the FIFO mode (if CANPC_enable_fifo has been
called).

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-45

4.5.15 CANPC_initialize_interface

int CANPC_initialize_interface(

int ReceiveFifoEnable,
int ReceivePollAll,
int ReceiveEnableAll,
int ReceiveIntEnableAll,
int AutoRemoteEnableAll,
int TransmitReqFifoEnable,
int TransmitPollAll,
int TransmitAckEnableAll,
int TransmitAckFifoEnable,
int TransmitRmtFifoEnable)

CANPC_initialize_interface configures properties and structure
of the object buffer (see Chapters 4.3.2 and 4.3.3). It may not
be used in FIFO operation, i.e. after CANPC_enable_fifo has
been called.

Function Parameters:

• ReceiveFifoEnable:
Type of receive message handling from firmware to PC appli-
cation.

1: Receive messages of data frames or remote frames
are transferred to the PC through the receive mes-
sage FIFO (see Chapters 4.3.2 and 4.3.3).

0: The PC ascertains receive messages of data frames
or remote frames by polling the objects in the re-
ceive object lists using the function
CANPC_read_ac. Under certain conditions this can
cause a longer running time of CANPC_read_ac,
and can therefore result in lower throughput rates
(see Chapters 4.3.2 and 4.3.3).

4-46 Software Description

- ReceivePollAll:
This flag is only meaningful for ReceiveFifoEnable = 0 with
static object buffer (should be 0 with dynamic object buffer).

1: Polling of all receive objects when CANPC_read_ac
is called (see Chapter 4.3.3)

0: Polling of only those receive objects which have
been defined using CANPC_define_object (see
Chapter 4.3.3)

- ReceiveEnableAll:
This flag is only meaningful with static object buffer (must be 0
with dynamic object buffer).

1: All data frames and remote frames on CAN 1 with
standard identifiers are received. No receive objects
need to be defined (However:
CANPC_define_object can be used nevertheless, in
order to activate receive objects for polling by the
application under the conditions ReceivePollAll = 0
and ReceiveFifoEnable = 0)

0: All receive objects that are passed to the PC must
be defined beforehand using CANPC_define_object.
Objects that are not defined using
CANPC_define_object are not received by the appli-
cation (filter functionality).

Software Description 4-47

- ReceiveIntEnableAll:
This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary object (declared using
CANPC_define_object or if ReceiveEnableAll = 1)
the receive message is passed to the PC applica-
tion. Additionally, an interrupt is generated to the
PC. The application program can read the object
using CANPC_read_ac.

0: Receipt of an object is only reported to the PC (with
interrupt) if the object has been declared in
CANPC_define_object with ReceiveIntEnable = 1.
Otherwise the data of the object will indeed be en-
tered into object buffer (and they can be read using
CANPC_read_rcv_data), but no information is gen-
erated for the application regarding receipt of the
object (readable by CANPC_read_ac).

- AutoRemoteEnableAll:
This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary remote frame the inter-
face independently transmits a data frame with the
same identifier (see 4.3.3).

0: When receiving a remote frame the interface only
transmits a data frame with the same identifier if the
corresponding receive object has been declared in
CANPC_define_object with AutoRemoteEnable = 1.
Otherwise the remote frame is reported to the PC
(calling CANPC_read_ac or
CANPC_read_rcv_data). The PC must transmit an
explicit response (data frame) then.

NOTE:
A data frame is only transmitted after the first call of
CANPC_supply_object_data or CANPC_write_object ini-
tialized the object data.

4-48 Software Description

- TransmitReqFifoEnable:

1: Transmit jobs for data frames or remote frames are
transferred to the CAN bus through the transmit job
FIFO (see Chapters 4.3.2 and 4.3.3)

0: Transmit jobs for data frames or remote frames are
recognized by the firmware via polling of the objects
in the transmit object lists (see Chapters 4.3.2 and
4.3.3).

- TransmitPollAll:
This flag is only meaningful for TransmitReqFifoEnable = 0
with static object buffer (should be 0 with dynamic object
buffer).

1 Polling of all transmit objects (see Chapter 4.3.3)
0: Polling of only those transmit objects that have

been defined using CANPC_define_object (see
Chapters 4.3.2 and 4.3.3)

Software Description 4-49

- TransmitAckEnableAll:

1: The interface acknowledges (in conjunction with an
interrupt to the PC) all data frames and remote
frames after successful transmission on the bus.
This acknowledgment can be read by
CANPC_read_ac or CANPC_read_xmt_data (see
Chapters 4.3.2 and 4.3.3).

0: All objects whose data frames and remote frames
are to be acknowledged by the interface after suc-
cessful transmission, must have been declared with
the parameter TransmitAckEnable=1 in
CANPC_define_object. Transmission of all other
objects is not reported to the application.

- TransmitAckFifoEnableAll:

1: Acknowledgements of transmitted data frames or
remote frames are transferred to the application
through the transmit-acknowledge-FIFO (see
Chapters 4.3.2 and 4.3.3).

0: Acknowledgements of transmitted data frames or
remote frames are recognized by polling of the ob-
jects (see Chapters 4.3.2 and 4.3.3). Under certain
conditions this can cause a longer running time of
the function CANPC_read_ac and thus lead to lower
throughput rates of the interface.

4-50 Software Description

- TransmitRmtFifoEnable:
This parameter selects the handling mechanism for objects
with Auto Remote Control configured (AutoRemoteEnable is
set).

1: Incoming remote frames are buffered in a FIFO and
are passed on for transmission of data frames (see
Chapters 4.3.2 and 4.3.3).

0: Incoming remote frames are stored in object lists,
which are polled for transmission of data frames
(see Chapters 4.3.2 and 4.3.3).

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-6 Parameter conflict
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-51

4.5.16 CANPC_define_object

int CANPC_define_object(

unsigned long Ident,
int *ObjectNumber,
int Type,
int ReceiveIntEnable,
int AutoRemoteEnable,
int TransmitAckEnable)

The function CANPC_define_object defines and configures
the communication objects of the transmit and receive object
lists in object buffer mode.

In dynamic object buffer mode all used objects have to be de-
fined, while in static object buffer mode the function can be
used optionally for individual configuration of the object han-
dling.

In static object buffer mode the returned object number equals
the identifier. But in dynamic object buffer mode it corresponds
to the succession of definition in the related object list.

NOTE:
The API functions handle the objects by their object
number. Hence, the user is recommended to setup a table
of relations between identifier and object number in dy-
namic object buffer mode.

4-52 Software Description

Function Parameters:
- Ident:
Identifier

[0 to 7FFHex] for standard objects
[0 to 1FFFFFFFHex] for extended objects

- ObjectNumber:
In the mode dynamic object buffer the object number in the
related object list is returned in this parameter. It is a handle
for the online access to this object (CANPC_send_object,
CANPC_read_rcv_data...).

The identifier itself will no longer be referenced. In the mode
static object buffer the object number is equal to the identifier.

- Type:
Direction of transmission and type of identifier

0: Standard receive object: Data frames and remote
frames with standard identifiers (11 bit) can be re-
ceived.

1: Standard transmit object: Data frames and remote
frames with standard identifiers (11 bit) can be
transmitted.

2: Extended receive object: Data frames and remote
frames with extended identifiers (29 bit) can be re-
ceived.

3: Extended transmit object: Data frames and remote
frames with extended identifiers (29 bit) can be
transmitted.

Software Description 4-53

- ReceiveIntEnable (only for receive objects):

1: When receiving an object with the identifier Ident the
receive message is passed to the PC application.
Additionally, an interrupt is generated to the PC. The
application program can read the object using
CANPC_read_ac.

0: After receipt of an object the object data are indeed
entered into object buffer (and they can be read us-
ing CANPC_read_rcv_data), but no information is
generated for the application regarding receipt of the
object. No interrupt is generated to the PC.

- AutoRemoteEnable (only for receive objects):

1: When receiving a remote frame with the identifier
Ident the CANusb transmits a data frame with the
same identifier independently from the PC (see
Chapters 4.3.2 and 4.3.3).

0: When receiving a remote frame the remote frame is
reported to the PC (can be read using
CANPC_read_ac or CANPC_read_rcv_data). The
PC must transmit an explicit response (data frame).

NOTE:
The remote frame is only answered automatically after
the first call of CANPC_supply_object_data or
CANPC_write_object. This assures that no non-initialized
data are transmitted. For the auto remote feature it is
necessary to define a transmit object as well as a receive
object with the same identifier.

4-54 Software Description

- TransmitAckEnable (only for transmit objects):

1 A data frame or remote frame with the identifier
Ident is acknowledged (in conjunction with an inter-
rupt to the PC) after successful transmission. This
acknowledgement can be read using
CANPC_read_ac or CANPC_read_xmt_data (see
4.3.2, 4.3.3).

0: A data frame or remote frame with the identifier
Ident is not acknowledged to the application after
successful transmission on the bus.

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their identi-
fiers in order to make prioritization of objects with low
identifiers the same as on the CAN bus. This is true for
static as well as for dynamic object buffer mode.

Function Return Codes:

 0: Function successful
-1: Parameter error
-2 Dyn. Obj. buffer mode not enabled
-4: Communication error between host and interface
-6. Parameter conflict
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-55

4.5.17 CANPC_set_interrupt_event

int CANPC_set_interrupt_event(HANDLE InterruptEvent)

This function gives a HANDLE (pointer) of a WIN32 event to
the driver which is set if new CAN events were posted to the
PC by the CANusb.

The event must be created beforehand by the application with
CreateEvent which is a function of the WIN32 API and returns
the required HANDLE. This WIN32 event can be used to con-
trol the processing of a WIN32 process or thread.

NOTE
This function is only useful in WIN32 applications.

For more detailed information about the interrupt handling re-
fer to Chapter 5.2.

 0: Function successful
-1: Function not successful

4-56 Software Description

4.5.18 CANPC_start_chip

int CANPC_start_chip(void)

The function CANPC_start_chip puts the CAN controller into
operational mode. From now on transmit jobs can be issued
and received messages are monitored.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error
-612: Not enough memory.

Check available memory resources.
-613: Failed to start communication between host and

interface.

Software Description 4-57

4.5.19 CANPC_send_data

int CANPC_send_data(

unsigned long Ident,
int Xtd,
int DataLength,
byte *pData)

Function Parameters:

- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes to be transmitted
- pData: Pointer to the address field of the data

This function transmits a data frame with the passed parame-
ters. The transmit request is processed through the transmit
FIFO. If the FIFO is full the application is informed by the re-
turn value.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-58 Software Description

4.5.20 CANPC_send_remote

int CANPC_send_remote(

unsigned long Ident,
int Xtd,
int DataLength)

Function Parameters:

- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes requested remote

This function transmits a remote frame with the Identifier Ident.
The remote frame has data length 0; however, the data length
specified by the parameter DataLength is transmitted in the
DLC field of the remote frame.

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-59

4.5.21 CANPC_supply_object_data

int CANPC_supply_object_data(

int ObjectNumber,
int DataLength,
byte *pData)

Function Parameters:

- ObjectNumber: Object number
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function enters current data into the object buffer of the
transmit object specified by ObjectNumber.

The data are not transmitted directly onto the bus, but rather
are prepared for pickup by a remote frame (Auto Remote) or a
later transmit job (later: CANPC_send_object).

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal
to the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

4-60 Software Description

Function Return Codes:

 0: Function successful
-1: Request overrun
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-61

4.5.22 CANPC_send_object

int CANPC_send_object(

int ObjectNumber,
int DataLength),

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes to be transmitted

This function transmits a data frame for the transmit object
specified by ObjectNumber. The data frame has a data length
of DataLength bytes. The data transmitted are the last en-
tered into the transmit object buffer using
CANPC_supply_object_data or CANPC_write_object.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal
to the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

4-62 Software Description

Function Return Codes:

 0: Function successful
-1: Request overrun
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-63

4.5.23 CANPC_write_object

int CANPC_write_object(

int ObjectNumber,
int DataLength,
byte *pData),

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function performs an update of the data in the object
buffer of the transmit object specified by ObjectNumber. Then
a data frame is transmitted with DataLength bytes.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal
to the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

4-64 Software Description

Function Return Codes:

 0: Function successful
-1: Request overrun
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-65

4.5.24 CANPC_send_remote_object

int CANPC_send_remote_object(

int ObjectNumber,
int DataLength)

Function Parameters:

- ObjectNumber: Object number
- DataLength: Number of data bytes

This function initiates transmission of a remote frame for a
transmit object specified by the object number. The remote
frame has a data length 0; however, the data length code is
physically transmitted with the data length code DataLength.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO. Otherwise the transmit request is registered in
the transmit object list to be polled by the firmware.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal
to the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

4-66 Software Description

Function Return Codes:

 0: Function successful
-1: Last request still pending
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-67

4.5.25 CANPC_define_cyclic

int CANPC_define_cyclic(

int ObjectNumber,
unsigned int Rate,
unsigned int Cycles)

The function CANPC_define_cyclic defines cyclic transmission
of a communication object previously defined by
CANPC_define_object.

The cyclic transmission is started and stopped by the value of
Rate. The settings of the newly defined cyclic transmission are
put into operation by the first call of CANPC_send_object or
CANPC_write_object for the object after the definition call.

Alternatively, the cyclic transmission is stopped automatically if
the defined number of cycles Cycles is reached.

NOTE:
If defined and started a cyclic object has to be stopped
before any succeeding redefinition. Redefinition of the
cycle rate while running the transmission results in faulty
transmission.
The transmitted data contents are defined by
CANPC_supply_object or CANPC_write_object. They can be
modified during cyclic transmission as well.

NOTE:
This function is only applicable in dynamic object buffer
mode.

4-68 Software Description

Function Parameters:
- ObjectNumber:
 Object reference returned by CANPC_define_object.

- Cycles [0..65535]:

0: Unlimited cyclic repetition
1..65535: Number of cyclic repetitions

- Rate [0..65535]:

0: Disable cyclic transmission (stop)
1..65535: Transmission rate in ms

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-69

4.5.26 CANPC_read_ac

int CANPC_read_ac(param_struct *ac_param)

By calling this function the application is informed about data
transmission and reception as well as about various error con-
ditions and bus events.

Several different CAN events can be distinguished by evalua-
tion of the function return code (see Table 4-13). Certain in-
formation and parameters of interest are transferred in the
elements of the parameter structure param_struct .

Elements of structure param_struct:
NOTE:
RC1 through RC12 in brackets specify the function return
codes of CANPC_read_ac for which the described pa-
rameter is valid. The application should not evaluate the
parameter if it comes with a different function return code
than stated below.

• unsigned long Ident:
 Identifier (FIFO mode) or object number (object buffer mode)
of the data or remote frame which was received or success-
fully transmitted.

 (RC1, RC2, RC3, RC8, RC9, RC10, RC11, RC12)

• int DataLength:
 Number of received (RC1, RC9) or transmitted (RC3, RC10)
data bytes.

 The DataLength of the received frame is only valid in FIFO
mode and should not be used in object buffer mode. In object
buffer mode the data length of the CAN messages should be
predefined by the project.

4-70 Software Description

• int RecOverrun_flag:
 The last received data of object Ident were not read by the PC
and were overwritten by the new data (RC1, RC2, RC9,
RC12). Only valid in object buffer mode.

• int RCV_fifo_lost_msg:
 Number of lost messages in receive FIFO (RC1, RC2, RC3,
RC8, RC9, RC10, RC11, RC12). Only valid in FIFO mode.

• byte RCV_data[8]:
 Data bytes of the received data frame (RC1, RC9).

• int AckOverrunFlag:
 This flag is set if an unread transmit acknowledge for a trans-
mit object is overwritten by a new one (RC3, RC10). Only valid
in object buffer mode.

• int XMT_ack_fifo_lost_acks:

 Number of lost acknowledge messages in transmit-
acknowledge-FIFO in object buffer mode due to FIFO over-
run(RC3, RC10).

 Only valid in mode object buffer configured with TransmitAck-
FifoEnable=1.

• int XMT_rmt_fifo_lost_remotes:
 Number of lost jobs in remote transmit FIFO (RC4). Only valid
in object buffer mode initialized with TransmitRmtFifoE-
nable=1.

Software Description 4-71

• int Bus_state:
 Returns the new CAN bus status if a status change occurred
(RC5).

0: error active

1: error passive

2: bus off

• int Error_state:
Not used. Only for conformity to CANcard and CAN-AC2 (ISA)
API.

• int Can:
 Number of CAN channel. With CANusb this parameter is al-
ways 1 (only single channel).

 (RC1, RC2, RC3, RC4, RC5, RC7, RC8, RC9, RC10, RC11,
RC12,RC15)

•••• unsigned long Time:
Time stamp of signaled events with a resolution of 1µs. This is
the actual onboard time when the event occurred. The timer is
reset in CANPC_start_chip. (RC1, RC2, RC9, RC12, RC3,
RC5, RC8, RC10, RC11, RC15)

4-72 Software Description

Table 4-13: Function return codes of CANPC_read_ac

FRC Explanation
0: No new event
1: Standard data frame received
2: Standard remote frame received
3: Transmission of a standard data frame is confirmed
4: Overrun of the remote transmit FIFO. Only with ob-

ject buffer and auto remote feature.
5: Change of bus status
6: Not used
7: Not used
8: Transmission of a standard remote frame is con-

firmed.
9: Extended data frame received
10: Transmission of an extended data frame is con-

firmed
11: Transmission of an extended remote frame is con-

firmed
12: Extended remote frame received
13, 14 Not valid. Only useful with CANcard API
15: Error frame detected
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-73

4.5.27 CANPC_read_rcv_data

int CANPC_read_rcv_data(

int ObjectNumber,
byte *pRCV_Data,
unsigned long *Time)

Function Parameters:

- ObjectNumber: Object number
- pRCV_Data: Pointer to the address field of data

being received
- Time: Pointer to a time stamp parameter

This function copies the data of the receive object specified by
ObjectNumber to the address pRCV_Data. The data are read,
even if no new data were received. 8 data bytes are always
copied to pRCV_Data, independent of the length of the re-
ceived data frame.

If data in the object buffer are overwritten before they were
read by the application or a remote request is not read quickly
enough an overrun is signaled to the application by the func-
tion return code (overrun in object buffer).

If a remote frame was received the user is informed by a spe-
cific return code.

Time returns the instant of the last received data with a reso-
lution of 1 microsecond (time stamp is reset in
CANPC_start_chip).

ObjectNumber is the reference to the object returned by
CANPC_define_object. In dynamic object buffer mode it de-
pends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

4-74 Software Description

Function Return Codes:

 0: No new data received
 1: Data frame received
 2: Remote frame received
-1: Receive data frame overrun
-2: Receive remote frame overrun
-3: Object not active
-7: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-75

4.5.28 CANPC_get_time

int CANPC_get_time(uns_long_ptr time);

Function Parameters:

- time: Time (32bit) in µs

CANPC_get_time returns the 32bit time from the onboard
timer of the CANusb in the parameter time. The unit of time is
µs. The timer is reset by CANPC_reset_chip.

Please note that the evaluation of the actual time stamp can
be delayed by the USB communication (max. 20 ms).

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-76 Software Description

4.5.29 CANPC_get_bus_state

int CANPC_get_bus_state(int Can);

Function Parameters:

- CAN: CAN bus number; set always to 1 with
CANusb.

CANPC_get_bus_state returns the current bus status of the
CAN controller of channel number Can.

If the CAN controller is in Bus-Off state it must be reset and
started again to enable further access to the bus.

Function Return Codes:

 0: Error active
 1: Error passive
 2: Bus off
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-77

4.5.30 CANPC_read_rcv_fifo_level

int CANPC_read_rcv_fifo_level(void);

CANPC_read_rcv_fifo_level returns the number of events in
the Receive-FIFO (host) waiting to be read by
CANPC_read_ac.

The FIFO level can be reset to 0 by CANPC_reset_rcv_fifo
which clears the FIFO.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

0 .. max1: Messages in receive FIFO
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

1: value of max depends on Receive-FIFO size set with
CANPC_set_rcv_fifo_size (see Chapter 4.5.10). Default value is 255.

4-78 Software Description

4.5.31 CANPC_reset_rcv_fifo

int CANPC_reset_rcv_fifo(void);

CANPC_reset_rcv_fifo resets the receive FIFO (host side) in
FIFO mode.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-79

4.5.32 CANPC_reset_lost_msg_counter

int CANPC_reset_lost_msg_counter(void);

CANPC_reset_lost_msg_counter resets the counter for the
receive messages which were lost while the receive FIFO re-
mained full in FIFO mode.

The lost message counter is supplied in the parameter struc-
ture of CANPC_read_ac.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-80 Software Description

4.5.33 CANPC_read_xmt_fifo_level

int CANPC_read_xmt_fifo_level(void);

CANPC_read_xmt_fifo_level returns the number of transmit
jobs in the transmit FIFO waiting to be transmitted by the in-
terface.

A pending transmission request which is already entered into
the transmit buffer of the firmware is not counted.

The FIFO level can be reset to 0 by CANPC_reset_xmt_fifo
which clears the FIFO (host side).

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

0 ... 1022: Jobs in transmit FIFO
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

Software Description 4-81

4.5.34 CANPC_reset_xmt_fifo

int CANPC_reset_xmt_fifo(void);

CANPC_reset_xmt_fifo resets the transmit FIFO (host and
firmware) in FIFO mode.

NOTE:
This function is only applicable in FIFO mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-82 Software Description

4.5.35 CANPC_supply_rcv_object_data

int CANPC_supply_rcv_object_data(

int ObjectNumber,
int DataLength,
byte *pData),

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be written in the object buffer

This function enters new data into the object buffer of the
specified receive object.

This function can be used for initialization of receive objects in
order to get reasonable values even before the first reception
of a respective data frame took place.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal
to the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

Software Description 4-83

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-84 Software Description

4.5.36 CANPC_read_xmt_data

int CANPC_read_xmt_data(

int ObjectNumber,
int *pDataLength,
byte *pXMT_Data),

Function Parameters:

- ObjectNumber: ObjectNumber
- pDataLength: Pointer to entry of number of trans-

mitted data bytes
- pXMT_Data: Pointer to the address field of data to

be transmitted

This function reads the data and the initialized data length of
the transmit object specified by ObjectNumber. Further, it
checks whether a frame has been transmitted for this object.

If no transmission acknowledgments are returned by the ob-
ject (see Chapters 4.3.2 and 4.3.3) the function return code 1
indicates that the last transmit job was acknowledged by an-
other CAN node. The return code -1 means that the last
transmission acknowledgment has not been read by the appli-
cation yet.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In dynamic object buffer mode it de-
pends on the succession of definition (see Chapter 4.3).

NOTE:
This function is only applicable in object buffer mode, not
in FIFO mode.

Software Description 4-85

Function Return Codes:

 0: No message was transmitted
 1: Message was transmitted
-1: Transmit acknowledge overrun
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4-86 Software Description

4.5.37 CANPC_reinitialize

int CANPC_reinitialize(void);

CANPC_reinitialize reinitializes and restarts the firmware
loaded on the interface by CANPC_reset_board. After firm-
ware reinitialization the CAN controller should be reset and re-
started.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Communication error between host and interface
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done.
-603: Communication via USB pipe broken.

Restart or re-plug the CANusb.
-605: Internal driver error

4.5.38 INIPC_close_board

int INIPC_close_board(void)

This function releases and unlocks the system resources
which were allocated by INIPC_initialize_board.

The function call should be applied at any possible application
exit after successful call to INIPC_initialize_board. Otherwise,
the application may have problems to get the hardware re-
sources a second time without system exit (e.g. applications
with LABView a.o.).

Function Return Codes:

 0: Function successful

Programming Notes 5-1

5 Programming Notes

5.1 API Linking

5.1.1 General

The API DLL exports the C API functions compliant to the
‘stdcall’ calling convention. This standard is supported by
nearly all compiler types and visualization tools. Basically the
parameter succession on the stack, stack cleaning and
naming of the functions in the export table are defined by the
calling convention.

The API functions appear in the export table of the DLL with
their function name as defined in the API function prototype
declaration (undecorated function names), e.g.

INIPC_initialize_board

CANPC_reset_board

CANPC_initialize_chip

For backward compatibility and compatibility to the CAN L2
APIs V4.xx of the other CAN interfaces the DLL exports the C
API functions also with their ‘decorated stdcall’ names as:

‘_FunctionName@ParameterBytes’

Example (32bit): _INIPC_initialize_board@4

_CANPC_reset_board@0

_CANPC_initialize_chip@20

The supplied definition file CANusb.def contains both the
decorated and undecorated API function names.

5-2 Programming Notes

An application can be linked to the CANusb Layer 2 API DLL
in two ways:

• Implicit Linking
The DLL is loaded and mapped into the address space of the
application process at startup. Implicit Linking requires a .lib
Library File (CANusb.lib) to be provided when building the
application executable.

• Explicit Linking
The DLL and API function entry points are loaded at run-time
within the application.

5.1.2 MS Visual C/C++

The API DLL is supplied together with a Visual C/C++ import
library (CANusb.lib) which may be linked to the application.
Otherwise explicit linking via the Win32 functions LoadLibrary
and GetProcAddress may be used.

5.1.3 Borland C/C++/Builder

Borland C/C++ is supported from version 4.5 upwards.

The supplied import library of the API DLL cannot be linked in
Borland projects since they are of Microsoft standard. You can
try to produce a Borland compatible import library of the DLL
using Borland tools IMPDEF and IMPLIB in the BIN directory
of the Borland installation:

1. IMPDEF tempimp.def canusb.dll

2. IMPLIB -f canusb.lib tempimp.def

As an alternative, the supplied canusb.def may be linked
instead of the import library to the Borland project.

Otherwise explicit linking via the Win32 functions LoadLibrary
and GetProcAddress may be used.

Programming Notes 5-3

5.1.4 MS Visual Basic

In Visual Basic the API functions are linked by declaring them
in a basic module.

Example:
Declare Function INIPC_initialize_board Lib "canusb.dll"
(resources As CANPC_RESSOURCES) As Long

Declare Function CANPC_reset_board Lib "canusb.dll" () As Long

For backward compatibility and compatibility to the CAN L2
APIs V4.xx of the other CAN interfaces the API functions may
be declared by their decorated names (see Chapter 5.1.1).

Example:
Declare Function INIPC_initialize_board Lib "canusb.dll" Alias
"_INIPC_initialize_board@4"
(resources As CANPC_RESSOURCES) As Long

Declare Function CANPC_reset_board Lib "canusb.dll" Alias
"_CANPC_reset_board@0" () As Long

The parameters can be defined as:
Type data_struct
Data(7) As Byte
End Type

Type CANPC_RESSOURCES
 SocketNumber As Integer
 InterruptLine As Integer
 DpramBase As Long
 DpramSize As Long
 ChipType As Integer
 IOAddress As Integer
 RegisterBase As Integer
End Type

5-4 Programming Notes

Type param_struct
 Ident As Long
 DataLength As Long
 RecOverrun_flag As Long
 RCV_fifo_lost_msg As Long
 Data As data_struct
 AckOverrun_flag As Long
 XMT_ack_fifo_lost_acks As Long
 XMT_rmt_fifo_lost_remotes As Long
 Bus_state As Long
 Error_state As Long
 Can As Long
 Time As Long
End Type

The declarations are supplied with the L2 API DLL as
canusb.bas. A complete application example for Visual Basic
6.0 is also supplied. For compatibility reasons the
declarations with the decorated names of the API functions
are used in canusb.bas (see Chapter 5.1.1).

Programming Notes 5-5

5.1.5 Delphi

In Delphi the API functions are linked by declaring them in a
Delphi Pascal-Unit.

Example:
function INIPC_initialize_board(ressources:
pCANPC_RESSOURCES):Integer;...

... stdcall;external'canusb.dll' name
'_INIPC_initialize_board@4';

function CANPC_reset_board:Integer; stdcall;external'canusb.dll' name
'_CANPC_reset_board@0';

function CANPC_reset_chip:Integer; stdcall;external'canusb.dll' name
'_CANPC_reset_chip@0';

function CANPC_initialize_chip(presc:Integer;
sjw:Integer;tseg1:Integer;tseg2:Integer;sam:Integer):Integer;...

...stdcall;external'canusb.dll' name
'_CANPC_initialize_chip@20';

The naming convention of the functions in the DLL’s export
table must be observed (see section 5.1.1). Furthermore, the
parameter structures in INIPC_initialize_board and
CANPC_reset_board can be defined as:
DataType = array [0..7] of Byte;

CANPC_RESSOURCES = record //Parameter structure for
 INIPC_initialize_interface

 uSocket: SmallInt;
 uInterrupt: SmallInt;
 ulDPRAMBaseAdr: LongInt;
 ulDPRAMSize: LongInt;
 uChip: SmallInt;
 IOAddress: SmallInt;
 uRegisterBase: SmallInt;
 end;

5-6 Programming Notes

PARAM_STRUCT = record //Parameter structure for CANPC_read_ac
 Ident: LongInt;
 DataLength: Integer;
 RecOverrun: Integer;
 LostMessage: Integer;
 RcvData: DataType;
 AckOverrun: Integer;
 LostAck: Integer;
 LostRemotes: Integer;
 BusState: Integer;
 Error_state: Integer;
 Can: Integer;
 TimeStamp: LongInt;
 end;

5.1.6 LABView

The API functions can be accessed via the Call Library
Function node. Configuring the node requires the following
definitions:

• DLL name and path as canusb.dll

• Function name according to stdcall

• Calling convention as stdcall.

• Parameters and return value as defined in software
description in the user manual (Chap.4).

The parameter structures of INIPC_initialize_board and
CANPC_read_ac can be defined as arrays and need to be
evaluated byte wise. The array’s size must fit or exceed the
parameter structure’s size. Otherwise, access violations during
operation may occur.

An application example for LABView 5.0 can be downloaded
from www.softing.com.

5.1.7 Others

Other application and compiler environments such as
LABWindowsCVI, HPVEE, WATCOM, Testpoint a.o. are
supported as well. Application hints and examples may be
requested from Softing’s technical CAN support.

Programming Notes 5-7

5.2 Interrupt Processing

5.2.1 WIN32 Events

For many applications it is useful to be informed by a WIN32
event about occurrence of CAN events. Otherwise, the
CANusb must be polled for new events which requires more
PC processor time.

The driver triggers a WIN32 event to the application on the
following CAN events:

• Reception of data, remote and error frames

• Acknowledge on successful transmissions if enabled

• Change of bus state

NOTE:
In object buffer mode the event service routine should
not interrupt any API function since this may cause false
function return codes .

5.2.2 WIN32 Event Programming

If the CANusb driver detects an new received CAN event it
triggers a WIN32 event which can be evaluated by the
application to control a WIN32 process or thread. Thus, an
application or thread can be created which is only processed
in case of new CAN events.

As a prerequisite the WIN32 event must be created by the
application. The hardware driver must be supplied with the
handle of this WIN32 event by API function
CANPC_set_interrupt_event. Furthermore a thread must be
created and started which gets into WAIT status until the
WIN32 event is triggered by the driver. Then, the necessary
interrupt activities can be processed and the thread gets back
into WAIT status.

5-8 Programming Notes

NOTE:
In object buffer mode the service routine should not
interrupt any API function since this may cause false
function return codes . Hence, parallel process control is
required which can be realized by critical sections (see
C++ manual).
Before termination of the WIN32 process the created
resources should be released for proper operation.

The event usage is exemplary implemented in the test
program ‘Can_test.exe’. The relevant functions are sampled in
‘Intexmpl.c’ in ‘\Sample\C’ directory of the installed software.
This C source code provides macro functions for initialization
and termination of the event handling as well as an event
service thread which may be linked to a customer application.

5.3 Debugging Hint
CANusb uses internal threads for communication. I.e. while
debugging, if the application halts at a user defined breakpoint
or is operated by single stepping, CAN messages and bus
events may not immediately be transfered via the API.

Programming Notes 5-9

5.4 Cyclic Transmission
Cyclic transmission tasks of data and remote frames can be
executed onboard by the firmware in dynamic object buffer
mode. The number of cycles can be set as well as the cycle
rate.

The cyclic transmission is programmed by following steps:

1. Definition of the transmit object by CANPC_define_object
during the initialization of the dynamic object buffer

2. Definition of cyclic transmission (number of cycles and
cycle time) of the previously defined transmit object by
CANPC_define_cyclic (after CANPC_start_chip).

3. Start of the cyclyc transmission by CANPC_send_object or
CANPC_write_object.

4. Stop unlimited cyclic transmission by CANPC_define_cyclic
with a cycle time of 0 ms.

The transmitted data contents are defined and modified during
cyclic transmission by CANPC_supply_object or
CANPC_write_object. The cyclic transmission is stopped
automatically if the defined number of cycles is reached.

NOTE:
If defined and started a cyclic object has to be stopped
before any succeeding redefinition. Redefinition of the
cycle rate while running the transmission results in faulty
transmission.
NOTE:
Cyclic transmission is only provided in dynamic object
buffer mode (DOB).

5-10 Programming Notes

5.5 Compatibility Note
There is full compatibility between all CAN APIs V4.x of
CANcard, CAN-AC2, CAN-AC2-PCI and CAN-AC2-104 and
V4.00 of CANusb if the following is observed.

• It is possible to operate an application with different
hardware platforms just by renaming the API DLL
accordingly.

• The application must use initialization parameters in
INIPC_initialize_board set to values which are valid for all
platforms to be supported. Especially,
cp_ressorces.uSocket should be set to -1
(AUTO_SOCKET).

• The default physical layer must be used by setting output
control to -1 in CANPC_set_output_control.

• If time stamps are to be used with CAN-AC2 (ISA) they
must be enabled explicitly by CANPC_enable_timestamps.

• Error frame detection is not possible with CAN-AC2 (ISA).

• Large Receive_FIFO support for Fifo Mode as descriped in
Chapters 4.3.1 and 4.5.10 is only available with the Layer 2
API DLL for the CANusb interface. Don’ t use the function
CANPC_set_rcv_fifo_size in applications with have to
operate with different CAN interfaces.

• The CAN API V4.x is also desigend for CAN interfaces
equipped with two CAN channels. For this see the CAN
API manuals of CAN-AC2, CAN-AC2-PCI, etc. Therefore
calling API functions directed to CAN channel CAN2 (like
CANPC_send_data2()) has no effects but causes no harm
also on CANusb. All functions to CAN2 return 0.
CANPC_get_bus_state() will return 2 (=Bus off) if called
with parameter Can = 2 (CAN2).

Test program Can_test.exe 6-1

6 Test program Can_test.exe

6.1 About the Test Program
Together with the API driver software a simple example and
test program is provided called Can_test.exe. As a 32bit
console (WIN32) it realizes basically the flow charts of the
operational modes described in Chapter 4.

The program monitors the CAN messages on the bus, informs
about various CAN events and is able to transmit messages
on the bus by hot key. Its functionality is not documented
except in the source code (see Chapter 6.3).

NOTE:
The example program Can_test is dedicated to start up
and test the proper operation of the CAN interface. It may
also serve as a basis for customer programs, but it IS
NOT suitable to realize customer specific communication
without any changes to the source code.

6.2 Testing Installation and Communication
It is recommended to use the program also as an installation
and operation test running the interface with another CAN
node. It should be assured that a valid bus termination is
applied.

First the program displays some useful information about
hardware, software and firmware version as well as about
serial number and license of the CAN interface. Otherwise, the
error number and cause are shown if the program fails.

NOTE:
Run the program from the command line window to get
the exact error code in case of a failure.

6-2 Test program Can_test.exe

The baudrate can be set to certain values. Further, the
operational mode has to be chosen:

• ‘f’ = FIFO

• ‘d’ = Dynamic object buffer

• ‘s’ = Static object buffer

As an option the user can decide whether the CAN events are
monitored by interrupt or by polling:

• ‘i’ = Interrupt

• ‘p’ = Polling

If the selection is omitted (just pressing ENTER) the default
settings are used (1 Mbit/s, FIFO mode, interrupt usage).

NOTE:
The display of ‘Chip is running’ states that any
initialization routines have been executed successfully.
The installation works fine.
After the initialization phase the program awaits input from the
keyboard and monitors the CAN bus. Incoming events
(CANPC_read_ac) are interpreted and displayed on the
screen (e.g. reception of messages). Transmit and control
requests can be issued to the interface (e.g. transmission of
messages) using hotkeys.

NOTE:
Press ‘h’ for HELP to get an overview about the possible
hotkeys and actions.

Test program Can_test.exe 6-3

6.3 Sample Code
The C source code of the program is sampled in the
‘\Sample\C’ directory of the installed software. It shows
exemplary the programming of the operational modes as well
as it provides basics of the WIN32 interrupt programming. The
code is conform for all Softing CAN interfaces. Making an
executable only requires compiling and linking of the source
files with the related library. As the WIN32 interrupt
programming in the sample involves a separate thread a
multithreaded run-time library of the development environment
has to be used.

The main body, board initialization routine and receive routine
are sampled in CAN_TEST.C.

Operation mode specific routines are arranged within FIFO.C,
DYNOBUF.C and STATOBUF.C.

In INTEXMPL.C all administrative functions for the interrupt
handling are sampled. They can be directly used for a
customer application just adding the interrupt service actions
into the interrupt thread.

NOTE:
The example program Can_test is dedicated to start up
and test the proper operation of the CAN interface,
preferably with connection an additional CAN node. It
may also serve as a basis for customer programs, but it
IS NOT suitable to realize customer specific
communication without any changes to the source code.
For more examples you can visit our homepage
http://www.softing.com or contact the technical support hotline
++49 89 456 56-326.

6-4 Test program Can_test.exe

Engineering notes:

Error Return Codes 7-1

7 Error Return Codes

This chapter defines the detailed error return codes of
INIPC_initialize_board (Table 7-1) and CANPC_reset_board
(Table 7-2) due to the variety of possible error causes while
initializing the CANusb or loading the firmware onto it.

The error codes of most API functions are fully described in
Chapter 4.

All possible error codes are defined in the include file
CANLAY2.H. This header file is unique for all hardware
platforms. Thus, some of the error codes in the header are not
dedicated to the CANusb at all.

7.1 INIPC_initialize_board

Table 7-1: Error codes of INIPC_initialize_board

Function
return code

Error cause

FE00 No CAN device or driver found
FE08 Wrong driver DLL version
FE09 Wrong driver version
FE0A Driver not found
FE0B Not enough memory
FE0C Too many devices
FE0E Device already exists
FE0F Device already open
FE11 Resource conflict
FE12 Resource access error

7-2 Error Return Codes

7.2 CANPC_reset_board

Table 7-2: Error codes of CANPC_reset_board

Error return
code

Error cause

-4 Communication error between host and
interface.

-6 Firmware data format error.
Reinstall API software.

-7 Firmware checksum error.
Reinstall API software.

-20 Bad response from card.
Re-plug CANusb

-21 SRAM seems to be damaged.
Try to reinstall the CANusb. If error is
remaining contact Softing.

-22 Invalid firmware start address.
Reinstall hardware.

-23 Invalid record type.
Reinstall hardware and API software.

-24 No response after firmware start.
Reinstall hardware and API software.

-25 Bad response after firmware start.
Reinstall hardware and API software.

-99 Board not initialized.
-603 Communication via USB pipe broken.
-614 Wrong version of boot firmware. Upgrade

the CANusb with CANusbUpg102.exe
supplied on the installation disk.

Glossary A-1

Glossary

AC

Application Controller

API

Application Programming Interface

CAN

Controller Area Network

CAN-AC

CAN Application Controller

CiA

CAN in Automation

DIP

Dual-Inline Package

DPRAM

Dual-Port Random Access Memory

ISA

Industry Standard Architecture

ISO

International Standards Organization

OS

Operating System

PB

PiggyBack

A-2 Glossary

PC

Personal Computer

PCB

Printed Circuit Board

PCI

Peripheral Component Interconnection

RAM

Random Access Memory

SAB

Siemens Advanced Board

SRAM

Static Random Access Memory

USB

Universal Serial Bus

Index B-1

Index

A
Acceptance

code 4-37

mask 4-37

API

DLL 4-2

driver concept 4-2

functionality 4-1

version 4-28

Auto remote control 4-47

B
Baud rate 4-31

Borland C/C++ 5-2

Bus state 4-76

Bus termination 3-2

C
Calling convention 5-1

CAN 1-1

controller 1-2

database 4-5, 4-9

High Speed 1-1, 4-34

initialization 4-14

interface 3-2

Low Speed 1-1

CAN_TEST.C. 6-3

Can_test.exe 2-2, 5-8, 6-1

CAN-AC2 5-10

CAN-AC2-PCI 5-10

CANcard 5-10

CANPC_define_cyclic 4-67

CANPC_define_object 4-51

CANPC_enable_dyn_obj_buf
4-44

CANPC_enable_error_frame_
detection 4-42

CANPC_enable_fifo 4-39

CANPC_enable_fifo_
transmit_ack 4-43

CANPC_enable_timestamps
4-41

CANPC_get_bus_state 4-76

CANPC_get_time 4-75

CANPC_get_version 4-28

CANPC_initialize_chip 4-31

CANPC_initialize_interface
4-45

CANPC_read_ac 4-69

CANPC_read_rcv_data 4-73

CANPC_read_rcv_fifo_level
4-77

CANPC_read_xmt_data 4-84

CANPC_read_xmt_fifo_level
4-80

CANPC_reinitialize 4-86

CANPC_reset_board 4-26

B-2 Index

CANPC_reset_chip 4-27

CANPC_reset_lost_msg_
counter 4-79

CANPC_reset_rcv_fifo 4-78

CANPC_reset_xmt_fifo 4-81

CANPC_send_data 4-57

CANPC_send_object 4-61

CANPC_send_remote 4-58

CANPC_send_remote_object
4-65

CANPC_set_acceptance 4-37

CANPC_set_interrupt_event
4-55

CANPC_set_output_control
4-34

CANPC_set_rcv_fifo_size
4-40

CANPC_set_serial_number
4-30

CANPC_start_chip 4-56

CANPC_supply_object_data
4-59

CANPC_supply_rcv_object_
data 4-82

CANPC_write_object 4-63

CANusb interface 1-1

canusbw.sys 4-2

Compatibility 5-10

Connector 3-3

pinning 3-3

Cyclic transmission 4-67, 5-9

D
Data length 4-69

Delphi 5-5

Dynamic object buffer mode
4-5

DYNOBUF.C 6-3

E
Error

frames 4-72

frames 4-42

Exit board 4-23

F
FIFO mode 4-3, 4-17

FIFO operation 4-13

FIFO.C 6-3

Firmware

download 4-26

version 4-28

Functional scope 1-2

H
Hardware

Environmental Conditions
3-1

version 4-28

Homepage 6-3

HPVEE 5-6

Index B-3

I
Identifier 4-69

Implementation 4-14

INIPC_close_board 4-86

INIPC_initialize_board 4-24

Initialization

board 4-14

CAN parameters 4-14

operational modes 4-16

Installation 2-1

test 2-2

Interrupt 4-6, 4-55, 5-7

events 5-7

Initializing 4-16

programming 5-7, 6-3

service thread 5-8

INTEXMPL.C 5-8, 6-3

L
LABView 5-6

LABWindowsCVI 5-6

Linking 5-1

Lost messages 4-70

M
Microsoft Visual C/C++ 5-2

O
Object

list 4-5, 4-9

number 4-51

type 4-51

Object buffer 4-13, 4-45

Object buffer mode 4-18

Operational modes 4-3

Comparison 4-13

Dynamic object buffer 4-5

FIFO 4-3

Static object buffer 4-9

Output Control Register 4-34

Overrun 4-13

P
param_struct 4-69

PC interface 1-2

Polling 4-5, 4-9

Prescaler 4-32

Q
Quick start 2-1

B-4 Index

R
Receive 4-21

events 4-4, 4-6, 4-10

FIFO 4-3, 4-4, 4-77

FIFO level 4-77

object list 4-6, 4-10

objects 4-5, 4-10, 4-46, 4-52

Reinitialization 4-23

Remote frames 4-7, 4-11

Reset 4-23

S
Sampling point 4-32

Scope of delivery 1-4

Software description 4-1

Static object buffer mode 4-9

STATOBUF.C 6-3

Support hotline 6-3

Supported Systems 1-3

Synchronization jump width
4-32

System requirements 2-1

T
Termination 3-2

Test program 6-1

Testpoint 5-6

Time segment 1 4-32

Time segment 2 4-32

Time stamp 4-71

Transmission 4-20

acknowledge 4-3, 4-6, 4-10,
4-43

FIFO 4-3

request 4-3, 4-5, 4-9

Transmit FIFO 4-80

U
Uninstall support 2-3

V
Visual Basic 5-3

	CANusb
	Contents
	Preface
	About this manual

	Introduction
	About CANusb
	Scope of Application
	Supported Systems
	Scope of Delivery

	How to Install CANusb
	System Requirements
	Installation
	How to Test the Installation
	Uninstall Support
	Software
	Hardware
	Windows 98 / ME
	Windows 2000 / XP

	Hardware Notes
	Environmental Conditions
	CAN Interface
	Implementation
	Bus Termination
	Connector Pinning

	Software Description
	About the CANusb API
	API Driver Concept
	Operational Modes of the Interface
	FIFO Mode
	Transmission Request
	Transmit Acknowledge
	Received Messages

	Dynamic Object Buffer Mode
	Transmission Request
	Transmit Acknowledge
	Received Messages
	Remote Frames

	Static Object Buffer Mode (only for 11-bit identifiers)
	Transmission Request
	Transmit Acknowledge
	Received Messages
	Remote frames

	Comparison FIFO to Object Buffer Mode

	Implementation
	Board Initialization
	CAN Initialization
	Initialization of Operational Mode
	FIFO Mode Specific Configuration Functions
	Object Buffer Mode Specific Configuration Functions

	Transmission
	Receiving
	Administration
	Reinitialization
	Exit board

	API functions Reference
	INIPC_initialize_board
	CANPC_reset_board
	CANPC_reset_chip
	CANPC_get_version
	CANPC_get_serial_number
	CANPC_initialize_chip
	CANPC_set_output_control
	CANPC_set_acceptance
	CANPC_enable_fifo
	CANPC_set_rcv_fifo_size
	CANPC_enable_timestamps
	CANPC_enable_error_frame_detection
	CANPC_enable_fifo_transmit_ack
	CANPC_enable_dyn_obj_buf
	CANPC_initialize_interface
	CANPC_define_object
	CANPC_set_interrupt_event
	CANPC_start_chip
	CANPC_send_data
	CANPC_send_remote
	CANPC_supply_object_data
	CANPC_send_object
	CANPC_write_object
	CANPC_send_remote_object
	CANPC_define_cyclic
	CANPC_read_ac
	CANPC_read_rcv_data
	CANPC_get_time
	CANPC_get_bus_state
	CANPC_read_rcv_fifo_level
	CANPC_reset_rcv_fifo
	CANPC_reset_lost_msg_counter
	CANPC_read_xmt_fifo_level
	CANPC_reset_xmt_fifo
	CANPC_supply_rcv_object_data
	CANPC_read_xmt_data
	CANPC_reinitialize
	INIPC_close_board

	Programming Notes
	API Linking
	General
	MS Visual C/C++
	Borland C/C++/Builder
	MS Visual Basic
	Delphi
	LABView
	Others

	Interrupt Processing
	WIN32 Events
	WIN32 Event Programming

	Debugging Hint
	Cyclic Transmission
	Compatibility Note

	Test program Can_test.exe
	About the Test Program
	Testing Installation and Communication
	Sample Code

	Error Return Codes
	INIPC_initialize_board
	CANPC_reset_board

	Glossary
	Index

