
CAN-AC2-PCI
User Manual
Version 4.07 March 2002

SOFTING AG
Richard-Reitzner-Allee 6
D-85540 Haar, Germany
Telephone (++49) 89/4 56 56-0
Telefax (++49) 89/4 56 56-399

 1998-2002 SOFTING AG

No part of these instructions may be reproduced (printed material,
photocopies, microfilm or other method) or processed, copied or distributed
using electronic systems in any form whatsoever without prior written
permission of SOFTING AG.
The producer reserves the right to make changes to the scope of supply as
well as changes to technical data, even without prior notice. A great deal of
attention was made to the quality and functional integrity in designing,
manufacturing and testing the system. However, no liability can be assumed
for potential errors that might exist or for their effects. Should you find errors,
please inform your distributor of the nature of the errors and the
circumstances under which they occur. We will be responsive to all
reasonable ideas and will follow up on them, taking measures to improve the
product, if necessary.

We call your attention to the fact that the company name and trademark as
well as product names are, as a rule, protected by trademark, patent and
product brand laws.

All rights reserved.
Printed in Germany 2002

HCN03E0203

Contents i

Contents

Preface 1
About this manual 1

1 Introduction 1-1
1.1 About the CAN-PCI interface 1-1

1.2 Scope of application 1-3
1.2.1 PC interface 1-3

1.2.2 CANalyzer 1-4

1.3 Supported systems 1-5

2 How to install CAN-AC2-PCI 2-1
2.1 System requirements 2-1

2.2 Quick start 2-2

2.3 How to install the API driver software 2-3
2.3.1 General 2-3

2.3.2 Windows 98/ME, Windows 2000/XP 2-3

2.3.3 Windows NT 4.0 2-7

2.3.4 Windows 95 2-11

2.3.5 Uninstall support 2-14

2.4 How to install the hardware 2-15

2.5 How to test the installation 2-16

ii Contents

3 Hardware description 3-1
3.1 Environmental conditions 3-1

3.2 General description 3-3

3.3 Physical bus interface 3-6

3.4 I/O connector 3-8

3.5 Bus termination 3-9

4 Software description 4-1
4.1 About the CAN-AC2 API 4-1

4.2 API driver concept 4-2

4.3 Operational modes of the interface 4-3
4.3.1 FIFO mode 4-3

4.3.2 Dynamic object buffer mode 4-5

4.3.3 Static object buffer mode (only for 11-bit identifiers) 4-9

4.3.4 Comparison FIFO to object buffer mode 4-15

4.4 Implementation 4-16
4.4.1 Board initialization 4-16

4.4.2 CAN initialization 4-16

4.4.3 FIFO mode 4-17

4.4.4 Object buffer mode 4-19

4.4.5 Exit board 4-22

4.5 Interrupt processing 4-23
4.5.1 Interrupt events 4-23

4.5.2 WIN32 interrupt programming 4-24

4.6 Description of the API functions 4-25

Contents iii

4.6.1 INIPC_initialize_board 4-25

4.6.2 CANPC_reset_board 4-27

4.6.3 CANPC_reset_chip 4-28

4.6.4 CANPC_get_version 4-29

4.6.5 CANPC_get_serial_number 4-31

4.6.6 CANPC_initialize_chip[2] 4-32

4.6.7 CANPC_set_mode[2] 4-35

4.6.8 CANPC_set_output_control[2] 4-36

4.6.9 CANPC_set_acceptance[2] 4-39

4.6.10 CANPC_enable_fifo 4-41

4.6.11 CANPC_enable_error_frame_detection 4-42

4.6.12 CANPC_enable_timestamps 4-43

4.6.13 CANPC_enable_fifo_transmit_ack[2] 4-44

4.6.14 CANPC_enable_dyn_obj_buf 4-45

4.6.15 CANPC_initialize_interface 4-46

4.6.16 CANPC_define_object[2] 4-52

4.6.17 CANPC_optimize_rcv_speed 4-56

4.6.18 CANPC_start_chip 4-57

4.6.19 CANPC_define_cyclic[2] 4-58

4.6.20 CANPC_send_remote_object 4-60

4.6.21 CANPC_supply_object_data[2] 4-62

4.6.22 CANPC_supply_rcv_object_data[2] 4-64

4.6.23 CANPC_send_object[2] 4-66

4.6.24 CANPC_write_object[2] 4-68

4.6.25 CANPC_read_rcv_data[2] 4-70

4.6.26 CANPC_read_xmt_data[2] 4-72

4.6.27 CANPC_send_data[2] 4-74

iv Contents

4.6.28 CANPC_send_remote[2] 4-76

4.6.29 CANPC_read_ac 4-78

4.6.30 CANPC_set_trigger[2] 4-83

4.6.31 CANPC_reinitialize 4-84

4.6.32 CANPC_get_time 4-85

4.6.33 CANPC_get_bus_state 4-86

4.6.34 CANPC_reset_lost_msg_counter 4-87

4.6.35 CANPC_read_rcv_fifo_level 4-88

4.6.36 CANPC_reset_rcv_fifo 4-89

4.6.37 CANPC_read_xmt_fifo_level 4-90

4.6.38 CANPC_reset_xmt_fifo(void); 4-91

4.6.39 CANPC_set_path 4-92

4.6.40 CANPC_set_interrupt_event 4-93

4.6.41 INIPC_close_board 4-94

5 Test program 5-1
5.1 About the test program 5-1

5.2 Testing installation an communication 5-2

5.3 Example code 5-4

6 Error codes 6-1
6.1 INIPC_initialize_board 6-2

6.2 CANPC_reset_board 6-3

Glossary 1

Contents v

Index B-1

vi Contents

List of figures
Fig. 3-1: Structure of the CAN-AC2-PCI 3-2

Fig. 3-2: CAN-AC2-PCI layout scheme 3-5

Fig. 3-3: Default jumper setting of piggyback connectors 3-7

Fig. 3-4: Pinning of the 9-pin D-sub connector 3-8

Fig. 3-5: Bus termination of the CAN connection 3-9

Fig. 4-1: Access structure of the API software 4-2

Fig. 4-2: FIFO mode structure 4-4

Fig. 4-3: Dynamic object buffer mode 4-8

Fig. 4-4: Static object buffer mode 4-14

Fig. 4-5: Flow chart programming FIFO mode 4-18

Fig. 4-6: Flow chart programming dynamic object buffer mode 4-20

Fig. 4-7: Flow chart programming static object buffer mode 4-21

Fig. 4-8: Bit period 4-34

Contents vii

List of tables
Table 2-1: Files installed for CAN-AC2-PCI in Windows 98/ME and

Windows 2000/XP (WDM)) 2-4

Table 2-2: Example files for CAN-AC2-PCI in Windows 98/ME and
Windows 2000/XP (WDM) 2-5

Table 2-3: Registry keys for CAN-AC2-PCI in Windows 2000/XP at
<Service Key>\Eventlog\System\CanACxPci 2-6

Table 2-4: Registry keys for CAN-AC2-PCI in Windows NT 4.0 at
<Service Key>\vcanpcid 2-7

Table 2-5: Registry keys for CAN-AC2-PCI in Windows NT 4.0 at
<Service Key>\EventLog\System\vcanpcid 2-8

Table 2-6: Files installed for CAN-AC2-PCI in Windows NT 4.0 2-9

Table 2-7: Example files for CAN-AC2-PCI in Windows NT 4.0 2-10

Table 2-8: Files installed for CAN-AC2-PCI in Windows 95 2-12

Table 2-9: Example files for CAN-AC2-PCI in Windows 95 2-13

Table 3-1: Jumper setting for CAN High Speed (default) 3-7

Table 3-2: 9-pin D-Sub connector acc. to CIA recommendation 3-8

Table 4-1: Elements of structure CANPC_RESSOURCES: 4-25

Table 4-2: Bit timing parameter 4-32

Table 4-3: Baud rate examples 4-34

Table 4-4: Output control Philips SJA1000 4-37

Table 4-5: Output control mode of Philips SJA1000 4-37

Table 4-6: Configuration of CAN output pins TX0 and TX1 4-38

Table 4-7: Filter parameters 4-39

Table 4-8: Function return codes of CANPC_read_ac 4-81

Table 6-1: Error codes of INIPC_initialize_board 6-2

Table 6-2: Error codes of CANPC_reset_board 6-3

viii Contents

Engineering notes:

Preface 1

Preface

About this manual
This user manual is written for users operating CAN-AC2-PCI
(Controller Area Network Application Controller 2 for
Peripheral Component Interconnection) together with the
operating systems Windows 9x/ME, Windows 2000/XP and
Windows NT 4.0.

It includes the following topics:

• Chapter 1 gives a common introduction about the product
CAN-AC2-PCI and its application.

• In Chapter 2 the installation procedure of software and
hardware are described as well as the installed
components. Helpful notes support the uncomplicated
installation. A ‘Quick start’ is included.

• Chapter 3 describes the CAN-AC2-PCI hardware. The main
function is explained, bus termination and I/O connectors
are defined.

• Chapter 4 helps to program the CAN access with the API
(Application Programming Interface). The API function
definition is included as well as a description of the main
operational modes and the programming. Furthermore,
some helpful implementation notes are made.

• Useful information about the test and example program
‘Can_test.exe’ can be found in chapter 5.

• Chapter 6 reports the error codes which may occur during
board initialization.

In addition to this user manual, always observe the Release
Notes contained in file README.TXT. This file resides on the
disk along with the setup program. The notes contain up-to-
date information concerning the present software version.

Preface2

Engineering notes:

Introduction 1-1

1 Introduction

1.1 About the CAN-PCI interface
High performance hardware and software computer interfaces
are necessary to connect devices and components to CAN
(Controller Area Network). CAN data streams must be
preprocessed and buffered at the CAN interface due to the
high real-time requirements of the CAN message traffic.

More and more, PCI (Personal Computer Interconnection) is
replacing the ISA bus due to its ability of high data throughput
and the advantage of auto configuration.

The CAN-AC2-PCI is an intelligent CAN interface board for
IBM and compatible computers with PCI bus. It can be
connected to two independent CAN network connections that
can be operated in parallel. Data exchange with the PC takes
place through a Dual-Port RAM (DPRAM). Together with the
supplied driver libraries PC-based applications can easily be
integrated into CAN networks.

The CAN-AC2-PCI interface:

• Offers an application interface to two independent,
electrical isolated CAN networks.

• Provides a physical layer according to ISO 11898 CAN High
Speed

• Can be optionally used with another physical interface.

• Relieves applications of real-time-sensitive tasks while
receiving and transmitting CAN messages by means of
buffering and filtering.

• Executes parts of an application directly on its own
processor, communicating with the PC via its dual-ported
RAM.

• Provides bit rates up to 1Mbit

• API supports WIN32 interrupts and cyclic transmission

1-2 Introduction

• Can be used with additional CAN standard software and
operating system drivers.

Introduction 1-3

1.2 Scope of application

1.2.1 PC interface

Each CAN-AC2-PCI is supplied with loadable onboard
firmware and a driver library to implement a PC application
interface. The library can be linked with the application
programs and thus allows the application access to the CAN
networks. The driver library supports:

• Initialization of the CAN chips

• Transmission of data frames and remote frames with time
stamped confirmation (may use interrupts)

• Event-driven reception of time stamped data frames and
remote frames (may use interrupts)

The CAN connection is implemented by two separate CAN
channels with the SJA1000 CAN controller from Philips
according to CAN specification 2.0B (11bit and 29bit identifier).

The physical interface consists of two electrically isolated CAN
High Speed interfaces according to ISO 11898. Customer-
specific connections can be implemented as piggyback.

Connection to the CAN bus system is made through the two 9-
pin D-Sub connectors on the slot bracket. The pin-out
conforms to the CiA standard (User Group: "CAN in
Automation").

1.2.2 CANalyzer

In addition to its use as a PC interface the CAN-AC2-PCI
serves as a platform for the CANalyzer software package. This
emulation and analysis system for CAN networks provides
analytical and simulation options that go beyond the basic
functions used to transmit and receive CAN messages. For
example, it is possible to detect and transmit individual CAN
error frames and accurately measure the bus load of the CAN
network.

1-4 Introduction

Beside the CANalyzer software a special license is required for
CANalyzer operation. The interfaces including CANalyzer
functionality are often referred to as CAN-AC2-PCI/ANA.

Introduction 1-5

1.3 Supported systems
The CAN-AC2-PCI V4.07 API functions are integrated in a
32bit DLL according to standard call convention. Thus, it is the
basis to support all compilers, measurement tools and
visualization systems which are able to provide access to 32bit
Windows DLLs, e.g.:

• Microsoft Visual C/C++ 4.0 (32bit) upwards1)

• Borland C/C++ 4.5 (32bit) upwards1)

• Borland C++ Builder 1.0 upwards1)

• Watcom C/C++ version 1.1 (Powersoft)1)

• Visual Basic 5.0 upwards (Microsoft)1)

• Delphi 2.0 upwards (Borland)1)

• LabVIEW 5.0 (National Instruments)1)

• LabWindows CVI 3.1 (National Instruments)1)

• HPVEE 4.01 (Hewlett Packard)1)

• Testpoint 3.3 (Keithley)1)

• WIZCON (PCSOFT)1)

• VISUA (SSS)1)

 For examples and more information about the supported
systems please visit our homepage http://www.softing.com or
contact the technical support hotline (++49) 89/4 56 56-337.

 Due to special driver implementations Softings CAN interfaces
are further supported by the following systems:

• DASYLAB (DATALOG)1)

• DIADEM (GfS)1)

Scope of delivery

1) All products mentioned are trademarks of their respective companies.

1-6 Introduction

Before you begin to install the CAN-AC2-PCI you should make
sure that all of the parts listed below are at hand.

The CAN-AC2-PCI is delivered with the following components:

• CAN-AC2-PCI board

• CD with installation software and documentation

How to install CAN-AC2-PCI 2-1

2 How to install CAN-AC2-PCI

2.1 System requirements
To run the CAN-AC2-PCI your PC must meet the following
requirements:

• 100% IBM-compatible

• At least one available PCI slot according to PCI spec. 2.1

• Windows 9x/ME, Windows NT 4.0 or Windows 2000/XP
running

• at least 2 MByte free on hard disk

2-2 How to install CAN-AC2-PCI

2.2 Quick start
1. Install the software by running ‘CAN-AC2-PCI V4.07N

Setup.EXE’ from installation disk.

2. Switch off the PC and plug in the CAN-AC2-PCI into a free
PCI slot.

3. Boot the PC.

4. Start ‘Can_test.exe’ from the command line and choose
any operational mode

If the test program states ‘Chips are running’ the installation
was successful and the PCI card works properly. Quit the test
by pressing ‘q’ or proceed further tests (see chap. 6).

If the test program returns any error code please refer to
Chapter 6.

How to install CAN-AC2-PCI 2-3

2.3 How to install the API driver software

2.3.1 General

The API driver software for the CAN-AC2-PCI is installed from
the installation CD by executing ‘CAN-AC2-PCI V4.07N
Setup.EXE’.

The Windows based installation program ‘CAN-AC2-PCI
V4.07N Setup.EXE’ automatically detects the operating
system, copies the related API driver files to hard disk and
prepares the system registry if necessary. The installation path
can be adjusted to customer’s choice. Status messages inform
about the success of the installation. For system specific notes
see sections 1.3.2 and 1.3.3.

2.3.2 Windows 98/ME, Windows 2000/XP

In Windows 98/ME and Windows 2000/XP the setup program
copies the files to the hard disk as described in Table 2-1 and
Table 2.2 (default installation path presumed). ‘%MAINDIR%’
is the representation of the installation path of the CAN-AC2-
PCI API software chosen by the customer.

Furthermore the setup program sets the registry keys for
enabling event logging as described in Table 2.3.

After successful finish of the setup program the PC is prepared
for the PnP installation of the hardware.

NOTE:
Due to the PnP mechanism of Windows 98/ME and
Windows 2000/XP the software installation should be
processed before installation of the hardware. If the CAN-
AC2-PCI is plugged in first the appearing installation
assistant should be closed by clicking the ‘Cancel’ button.

2-4 How to install CAN-AC2-PCI

Table 2-1: Files installed for CAN-AC2-PCI in Windows 98/ME
and Windows 2000/XP (WDM))

File Description
Windows\System\vcanpciw.sys WDM device driver

for hardware access
Windows\System\vcanpcid.dll Device driver DLL

Windows 98/ME only
Windows\System32\vcanpcid.dll Device driver DLL

Windows 2000/XP
only

Windows\Inf\vcanpciw.inf Installation script file
%MAINDIR%\readme.txt ‘Readme’ file with

installation and
application
information

%MAINDIR%\Install.log Logging file for
uninstallation

%MAINDIR%\Unwise.exe Uninstall program
%MAINDIR%\win32\canacpci.dll CAN-AC2-PCI API

DLL
%MAINDIR%\win32\canacpci.lib C import library for

‘canacpci.dll’
(Microsoft standard)

%MAINDIR%\win32\canacpci.def Module definition file
for linking with
Borland applications

%MAINDIR%\Include\Canlay2.h
%MAINDIR%\Include\Can_def.h

API header files with
necessary definitions
and declarations

How to install CAN-AC2-PCI 2-5

Table 2-2: Example files for CAN-AC2-PCI in Windows 98/ME
and Windows 2000/XP (WDM)

File Description
%MAINDIR%\win32\Can_test.exe Test and

example
program

%MAINDIR%\Source\Can_test.c
%MAINDIR%\Source\Dynobuf.c
%MAINDIR%\Source\Statobuf.c
%MAINDIR%\Source\Fifo.c
%MAINDIR%\Source\Intexmpl.c

“C” Example
source code of
‘Can_test.exe’

%MAINDIR%\bas\Can_Object.frm
%MAINDIR%\bas\CAN_TEST.FRM
%MAINDIR%\bas\CAN_TEST.frx
%MAINDIR%\bas\CAN_TEST_PCI.vbp
%MAINDIR%\bas\can_values.frm
%MAINDIR%\bas\CANACPCI.BAS
%MAINDIR%\bas\COMMON.BAS
%MAINDIR%\bas\test_specific.bas

Visual Basic 6.0
Example
source code

%MAINDIR%\bas\CANACPCI.DLL API DLL
%MAINDIR%\bas\readme.txt Readme for

Visual Basic
Example

2-6 How to install CAN-AC2-PCI

Table 2-3: Registry keys for CAN-AC2-PCI in Windows
2000/XP at <Service Key>\Eventlog\System\CanACxPci 1

Registry key Type Value
TypesSupported REG_DWORD 7
EventMessageFile REG_SZ Path to WDM

device driver
for hardware
access (see
Table 2.1)

1 <Service Key> = HKLM\System\CurrentControlSet\Services

How to install CAN-AC2-PCI 2-7

2.3.3 Windows NT 4.0

The setup program ‘CAN-AC2-PCI V4.07N Setup.EXE’ installs
the files shown in Table 2-6 and Table 2.7 on the hard disk.
Furthermore, all necessary Windows NT 4.0 registry keys are
set in the <Service Key> 1in the registry as described in Table
2-4 and Table 2-5. Additional registry entries are made by the
system after succeeding hardware installation.

NOTE:
After the software installation the system has to be
restarted to put the new registered driver in effect.

Table 2-4: Registry keys for CAN-AC2-PCI in Windows NT 4.0
at <Service Key>\vcanpcid1

Registry key Type Value
ErrorControl REG_DWORD 1
Start REG_DWORD 2 (Automatic)
Type REG_DWORD 1
Group REG_SZ "Extended base"
DisplayName REG_SZ "CAN-AC-PCI (Softing)"

1 <Service Key> = HKLM\System\CurrentControlSet\Services

2-8 How to install CAN-AC2-PCI

Table 2-5: Registry keys for CAN-AC2-PCI in Windows NT 4.0
at <Service Key>\EventLog\System\vcanpcid1

Registry key Type Value
TypesSupported REG_DWORD 7
EventMessageFile REG_SZ Path to device

driver for
hardware
access
(see Table 2.6)

NOTE:
The registry entries should not be changed by the
customer since this may result in faulty driver
functionality.

1 <Service Key> = HKLM\System\CurrentControlSet\Services

How to install CAN-AC2-PCI 2-9

Table 2-6: Files installed for CAN-AC2-PCI in Windows NT 4.0

File Description
Windows\System\vcanpcid.sys Device driver for

hardware access
Windows\System\vcanpcid.dll Device driver DLL
%MAINDIR%\readme.txt ‘Readme’ file with

installation and
application information

%MAINDIR%\Install.log Logging file of
installation

%MAINDIR%\Unwise.exe Uninstall program
%MAINDIR%\win32\canacpci.dll CAN-AC2-PCI API

DLL
%MAINDIR%\win32\canacpci.lib C import library for

‘canacpci.dll’
(Microsoft standard)

%MAINDIR%\win32\canacpci.def Module definition file
for linking with Borland
applications

%MAINDIR%\Include\Canlay2.h
%MAINDIR%\Include\Can_def.h

API header files with
necessary definitions
and declarations

2-10 How to install CAN-AC2-PCI

Table 2-7: Example files for CAN-AC2-PCI in Windows NT 4.0

File Description
%MAINDIR%\win32\Can_test.exe Test and

example
program

%MAINDIR%\Source\Can_test.c
%MAINDIR%\Source\Dynobuf.c
%MAINDIR%\Source\Statobuf.c
%MAINDIR%\Source\Fifo.c
%MAINDIR%\Source\Intexmpl.c

“C” Example
source code of
‘Can_test.exe’

%MAINDIR%\bas\Can_Object.frm
%MAINDIR%\bas\CAN_TEST.FRM
%MAINDIR%\bas\CAN_TEST.frx
%MAINDIR%\bas\CAN_TEST_PCI.vbp
%MAINDIR%\bas\can_values.frm
%MAINDIR%\bas\CANACPCI.BAS
%MAINDIR%\bas\COMMON.BAS
%MAINDIR%\bas\test_specific.bas

Visual Basic 6.0
Example
source code

%MAINDIR%\bas\CANACPCI.DLL API DLL
%MAINDIR%\bas\readme.txt Readme for

Visual Basic
Example

How to install CAN-AC2-PCI 2-11

2.3.4 Windows 95

 In Windows 95 the setup program copies the files to the hard
disk as described in Table 2-8 and Table 2.9 (default
installation path presumed). ‘%MAINDIR%’ is the
representation of the installation path of the CAN-AC2-PCI API
software chosen by the customer.

After successful finish of the setup program the PC is prepared
for the PnP installation of the hardware.

NOTE:
Due to the PnP mechanism of Windows the software
installation should be processed before installation of the
hardware. If the CAN-AC2-PCI is plugged in first the
appearing installation assistant should be closed by
clicking the ‘Cancel’ button.

2-12 How to install CAN-AC2-PCI

Table 2-8: Files installed for CAN-AC2-PCI in Windows 95

File Description
Windows\System\vcanpcid.vxd Virtual device driver

for hardware access
Windows\System\vcanpcid.dll Device driver DLL
Windows\Inf\vcanpcid.inf Installation script file
%MAINDIR%\readme.txt ‘Readme’ file with

installation and
application
information

%MAINDIR%\Install.log Logging file for
uninstallation

%MAINDIR%\Unwise.exe Uninstall program
%MAINDIR%\win32\canacpci.dll CAN-AC2-PCI API

DLL
%MAINDIR%\win32\canacpci.lib C import library for

‘canacpci.dll’
(Microsoft standard)

%MAINDIR%\win32\canacpci.def Module definition file
for linking with
Borland applications

%MAINDIR%\Include\Canlay2.h
%MAINDIR%\Include\Can_def.h

API header files with
necessary definitions
and declarations

How to install CAN-AC2-PCI 2-13

Table 2-9: Example files for CAN-AC2-PCI in Windows 95

File Description
%MAINDIR%\win32\Can_test.exe Test and

example
program

%MAINDIR%\Source\Can_test.c
%MAINDIR%\Source\Dynobuf.c
%MAINDIR%\Source\Statobuf.c
%MAINDIR%\Source\Fifo.c
%MAINDIR%\Source\Intexmpl.c

“C” Example
source code of
‘Can_test.exe’

%MAINDIR%\bas\Can_Object.frm
%MAINDIR%\bas\CAN_TEST.FRM
%MAINDIR%\bas\CAN_TEST.frx
%MAINDIR%\bas\CAN_TEST_PCI.vbp
%MAINDIR%\bas\can_values.frm
%MAINDIR%\bas\CANACPCI.BAS
%MAINDIR%\bas\COMMON.BAS
%MAINDIR%\bas\test_specific.bas

Visual Basic 6.0
Example
source code

%MAINDIR%\bas\CANACPCI.DLL API DLL
%MAINDIR%\bas\readme.txt Readme for

Visual Basic
Example

2-14 How to install CAN-AC2-PCI

2.3.5 Uninstall support

After successful installation the uninstall support window of the
‘software’ entry in the ‘system control’ includes the ‘CAN-AC2-
PCI V4.07’ entry. Double clicking this entry the ‘Unwise.exe’ in
the installation root of the CAN-AC2-PCI software is entered
and all steps of the preceding installation are undone.

NOTE:
The system changes made by the Windows 9x/ME or
Windows 2000/XP PnP system must be undone by
additionally deinstallation of the ‘Remove CAN-AC2-PCI
driver’ entry in the ‘software’ panel of the the Windows
9x/ME or Windows 2000/XP ‘system control’.

NOTE:
After uninstalling the software with ‘Unwise.exe’ in
Windows NT 4.0 some registry entries are left which were
made by the system. These entries can be cleaned up
manually by deleting

HKLM\SYSTEM\CurrentControlSet\Services\vcanpcid.

How to install CAN-AC2-PCI 2-15

2.4 How to install the hardware
Install the CAN-AC2-PCI board into your PC by following steps:

1. First switch OFF your PC.

2. Make sure that any peripheral devices are powered down
(Monitor, etc.).

3. Remove the housing cover (refer to your PC manual if
necessary).

4. Select an available slot for the CAN-AC2-PCI board and
remove the slot cover

5. Plug the CAN-AC2-PCI board into the socket of the
motherboard applying light pressure until the corner of the
slot cover sits snugly to the housing.

6. Fasten the slot cover of the CAN-AC2-PCI board with the
screw that you removed before.

7. Reassemble the housing cover.

8. Turn ON the PC and applicable peripheral devices.

NOTE:

(1) Improper handling of the CAN-AC2-PCI board can lead
to its destruction by electrostatic discharges. Therefore,
you should discharge yourself on a grounded object such
as the metal housing of the PC before each and every
contact with the board.

(2) If you run Windows 9x/ME or Windows 2000/XP on
your PC please be sure that the software is already
installed before you plug in the board for the first time.

2-16 How to install CAN-AC2-PCI

2.5 How to test the installation
After installation of hardware and software the test program
‘Can_test.exe’ in ‘Win32’ directory of the installed software can
be executed from the command line to test the installation:

1. Run ‘Can_test.exe’

2. After successful loading of the firmware the program states
version of hard- and software, chip types and serial number
of the board. Errors while initializing the PCI board are
stated with error number and text.

3. Input ‘i’ for interrupt mode and an operational mode of your
choice.

4. The program acknowledges success of interrupt
initialization and of the operational mode.

NOTE:
When the program prints ‘Chip is running’ the hardware
was successfully initialized. Thus, the installation works
properly.

5. Quit with ‘q’ or step to further tests (see Chap. 6).

Hardware description 3-1

3 Hardware description

3.1 Environmental conditions
For proper operation of the CAN-AC2 the following
environmental conditions have to be observed:

• Operating temperature 0...+55°C

• max. temperature drift 3°/min

• Non operating temperature -20...+70°C

 (transport and storage)

• Relative humidity (non condensing) 5... 90%

• Range of air pressure 860...1060hPa (mbar)

• Power supplied by the PCI-Bus +5V (±5%) max. 500mA

3-2 Hardware description

DPRAM
4 kByte

CAN
controller
SJA1000

SRAM
256 kByte

CAN High Speed
Transceiver 82C251

D-SUB9

SAB C165

EEPROM

PCI Bus

Coupler

Opto
-

CAN
controller
SJA1000

CAN High Speed
Transceiver 82C251

D-SUB9

Coupler

Opto
-

CAN-AC2-PCI

PCI Controller

PC

electrical
isolated

electrical
isolated

Fig. 3-1: Structure of the CAN-AC2-PCI

Hardware description 3-3

3.2 General description
The CAN-AC2-PCI provides an interface to two independent
CAN networks (Version 2.0B) for IBM compatible PC systems
via PCI bus. It is designed according to the PCI Local Bus
Specification Rev. 2.1.

Fig. 3-1 shows the main structure of the hardware. In Fig. 3-2
the layout reveals the positions of the hardware parts on the
PC board.

Main features

• Onboard micro controller SAB C165

• 256 kbytes RAM onboard

• PC to board communication via a dual ported RAM of
4kbyte (DPRAM)

• CAN controller Philips SJA1000

• Transceiver PCA82C251 from Philips according to CAN
High Speed Specification ISO11898 (optional customer
specific transceivers on piggyback)

• Electrically isolated by optocoupler

The PC application communicates with the onboard firmware
via a DPRAM. The micro controller operates the CAN
controllers and manages the handling of transmit and receive
jobs. Thus, the PC is freed of executing these time critical
tasks.

The connection of the CAN transmit and receive lines to the
physical bus is realized by the transceiver device PCA82C251
from Philips according to the CAN High Speed specification
(ISO11898). It converts the Tx0 and Rx0 lines of the CAN
controller to CAN_H and CAN_L signals which are connected
directly to the CAN bus.

Optionally, the CAN-AC2-PCI can be equipped with different
transceiver chips on piggybacks (P1 and P2) for different
physical specifications (see section 3.3).

3-4 Hardware description

Optocouplers are used to electrically isolate the CAN bus from
the CAN controller. Each of the two channels is supplied by the
PC via an isolated DC/DC converter. The ground potential is
connected to PC ground via an RC element of 1MΩ resistance
and 100nF capacity.

The CAN-AC2-PCI is connected to the CAN network via D-
SUB 9 connectors. They are described in section 3.4.

Optionally, the user is enabled to set the proper CAN bus
termination onboard with DIP switches (S1). Please refer to
section 3.5.

Hardware description 3-5

Fig. 3-2: CAN-AC2-PCI layout scheme

3-6 Hardware description

3.3 Physical bus interface
The standard version of the CAN-AC2-PCI board is equipped
with PCA82C251 from Philips according to the CAN High
Speed specification (ISO11898). In this case jumpers are
plugged in the piggyback connectors to supply the CAN
controller signals Tx and Rx to the default transceiver chips.
This default jumper setting is shown in Fig. 3-3 and defined in
Table 3-1.

NOTE:
Don’t change the jumper settings if you run the interface
in the default CAN High Speed environment. Changes may
lead to malfunctions or destruction of the board.

If you need to implement the CAN interface in a CAN system
with a different physical specification, the required transceiver
circuits can be plugged in as piggybacks P1 and P2 . In this
case the jumpers in Table 3-1 have to be removed.

Softing offers a CAN Low Speed Interface as piggyback which
connects the CAN-AC2-PCI with CAN networks compliant to
CAN Low Speed specification ISO DIS 11519-1. Please
contact Softing sales department for more specific information
about signaling and application of the transceiver piggybacks if
needed.

Hardware description 3-7

Fig. 3-3: Default jumper setting of piggyback connectors

 Table 3-1: Jumper setting for CAN High Speed (default)

Jumper Signal
X8.1-14 CAN_H channel 2
X8.2-15 CAN_L channel 2
X16.11-22 Rx0 channel 2
X16.10-23 Rx1 channel 2
X16.9-24 Tx0 channel 2
X17.1-14 CAN_H channel 1
X17.2-15 CAN_L channel 1
X15.11-22 Rx0 channel 1
X15.10-23 Rx1 channel 1
X15.9-24 Tx0 channel 1

3-8 Hardware description

3.4 I/O connector
The pining of the D-Sub connectors are defined according to
the CiA recommendation for the CAN High Speed Bus.

The shield is connected to the earth via PC housing. To
prevent high compensation currents due to earth loops the
cable shielding can be connected to pin 5 (Drain) instead of
the D-SUB 9 shield. This potential is connected to PC ground
via a RC element of 1MΩ resistance and 100nF capacity to PC
ground.

Fig. 3-4 and Table 3-3 show the pining of the D-Sub 9
connector which is valid for both of the CAN channels.

Fig. 3-4: Pinning of the 9-pin D-sub connector

Table 3-2: 9-pin D-Sub connector acc. to CIA recommendation

Pin Signal
1 N.C.
2 CAN_L
3 GND (DCDC)
4 N.C.
5 Drain (1M/100n to PC GND)
6 GND (DCDC)
7 CAN_H
8 N.C.
9 N.C.

Hardware description 3-9

3.5 Bus termination
The CAN High Speed bus should be terminated with 124 Ohm
between CAN_H and CAN_L on each end of the network (see
Fig. 3-5).

This termination resistance should be realized either in the
cable or on the CAN-AC2-PCI directly. To put the onboard
termination into operation the DIP switch on the front panel (S1
in Fig. 3-2) is to be switched to ‘ON’ which is the default
setting.

NOTE
Invalid bus termination can cause communication errors.

CAN High
Speed

Transceiver
124Ω 124Ω

CAN Network

CAN_H

CAN_L

CAN High
Speed

Transceiver

Fig. 3-5: Bus termination of the CAN connection

3-10 Hardware description

Engineering notes:

Software description 4-1

4 Software description

4.1 About the CAN-AC2 API
The CAN-AC2-PCI API (Application Programming Interface) is
realized as a 32bit-DLL for Windows.

Different operational modes of the interface can be configured:
FIFO and object buffer mode. Thus, the programmer is
enabled to adapt it to the communication task in the most
suitable way.

The CAN-AC2-PCI API is designed to be conform to the API’s
of Softings other CAN interfaces (PCMCIA, ISA, PC/104). It
provides the following functionality:

• Initialization of CAN parameters, e.g. bit rate, output control
a. o.

• Transmission and reception of data and remote frames

• Message filtering

• Acknowledgment on successful transmission (optional)

• Automatic response to remote frames (optional)

• Error state detection

• Bus state detection

• Interrupt support

• Cyclic transmission

This chapter describes the basic operational modes, functions
and program sequences of the API.

4-2 Software description

4.2 API driver concept
The API functions to program the interface for CAN access are
supplied in a 32bit Windows DLL ‘Canacpci.dll’. This library
accesses the DPRAM on the CAN-AC2-PCI via the 32bit driver
DLL ‘Vcanpcid.dll’ and the hardware driver.

The hardware driver in Windows 95 is a ring 0 virtual device
driver ‘Vcanpcid.vxd’. In Windows NT the kernel mode driver
‘Vcanpcid.sys’ needs to be started before accessing the CAN
interface. The hardware driver in Windows 98/ME and
Windows 2000/XP is a WDM (Windows Driver Model) device
driver.

Driver and driver DLL are placed in the system directory of the
OS. We recommend to copy the API DLL ‘Canacpci.dll’ to the
local directory of the application to prevent access errors due
to existence of API DLLs of different versions.

CAN
network

CAN
network

Application (32bit)

API DLL
Canacpci.dll

Driver DLL
Vcanpcid.dll

Hardware driver
Vcanpcid.vxd (Win. 95)

Vcanpcid.sys (Win. NT 4.0)
Vcanpciw.sys (WDM)

PCI bus

Firmware

PC

DPRAM

CAN-AC2-PCI

Fig. 4-1: Access structure of the API software

Software description 4-3

4.3 Operational modes of the interface
The CAN-AC2-PCI together with its driver library offers two
alternative operating modes handling CAN messages: FIFO
operation and CAN object buffer. Furthermore, the object
buffer can be defined as static or dynamic.

4.3.1 FIFO mode

The communication between the CAN bus and the PC
application through the dual ported RAM is processed
sequentially using FIFOs (Fig. 4-2). The message that is
entered first into the FIFO (First In First Out), is the next to be
processed further. Each of the FIFOs can bear a maximum of
255 entries.

FIFO mode is chosen calling CANPC_enable_fifo (see Fig.
4-5)

4.3.1.1 Transmission request

The ‘Transmit FIFO’ handles all transmit requests of the
application entered by CANPC_send_data[2].

If the Transmit FIFO gets full new transmit requests are denied
and the application is informed by the error return code.

4.3.1.2 Receive events and transmit acknowledges

Received messages, bus events and transmit acknowledges
on successful transmission are transferred to the application
through the ‘Receive FIFO’. They can be read out of the FIFO
using CANPC_read_ac.

4-4 Software description

Application

API

Firmware

CAN 1 CAN 2

Receive FIFO
(max. 255 entries)

Transmit FIFO
(max. 255 entries)

Transmit
requests

Transmit
request

Receive Events
Transmit ACK

Receive Events
Transmit ACK

Fig. 4-2: FIFO mode structure

Software description 4-5

4.3.2 Dynamic object buffer mode

The dynamic object buffer mode is chosen calling
CANPC_enable_dyn_obj_ (see Fig. 4-6). In this operational
mode the CAN messages and their data are stored in 4 object
lists, i.e. transmission and reception lists for each CAN
channel (Fig. 4-3). Each list can bear a maximum of 200
objects.

The entries of the lists, i.e. CAN messages of interest, have to
be defined by the application using CANPC_define_object in
the initialization routine. An object includes identifier and data
of a CAN message. The API handles the objects with their
object number which is returned by CANPC_define_object to
the application program.

It is possible at any time to read or write the data of a defined
object. Thus, the application always has a consistent
representation of a defined "CAN database".

The handling of transmission requests, received messages,
transmit acknowledges and remote frames are individually
switched on or off for each object by definition
(ReceiveIntEnable, AutoRemoteEnable, TransmitAckEnable).
The interface offers two main handling mechanisms for these
interaction tasks, FIFO or polling. They can be configured
using CANPC_initialize_interface.

4.3.2.1 Transmission requests

A transmit request is commanded by CANPC_send_object or
CANPC_write_object.

If TransmitReqFifoEnable is set in CANPC_initialize_inter-face,
the transmit request for an object is transferred to the CAN
controller through a FIFO. Otherwise, the transmit object lists
are polled for objects to be sent.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO is recognized and reported to the application.

Polling is processed from low to high object numbers.

4-6 Software description

4.3.2.2 Transmit acknowledges

On successful transmission of an object a corresponding
acknowledge can inform the application using
CANPC_read_ac.

The acknowledges can be switched on or off for either all
objects (TransmitAckEnableAll) or for each transmit object by
definition (TransmitAckEnable).

If the transmit acknowledge FIFO is configured
(TransmitAckFifoEnable), the transmit acknowledges are
transferred through a FIFO to the application. Otherwise, the
transmit object lists are polled for acknowledged objects.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost transmit acknowledge messages
are recognized, counted and reported to the application.

Polling is processed from low to high object numbers and
CAN1 before CAN2.

4.3.2.3 Receive events

Calling CANPC_read_ac, the application is informed about
reception of objects and other bus events.

The report of a received object and generating an interrupt to
the application can be switched on/off by definition
(ReceiveIntEnable) for filter functionality. The data of the
received object are entered into the receive object list in any
case.

If a receive FIFO is configured (ReceiveFifoEnable), the
received objects and status messages are transferred through
a FIFO to the application. Otherwise, the receive object lists
are polled for received objects.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost messages are recognized,
counted and reported to the application.

Polling is processed from low to high object numbers and
CAN1 before CAN2.

Software description 4-7

4.3.2.4 Remote frames

If automatic transmission on reception of remote frames is
configured by definition for an object (AutoRemoteEnable), the
interface sends automatically a data frame with the same
identifier. Otherwise, the remote frame is inserted into the
object list and should be replied by the application.

If FIFO for auto remote transmission is configured
(TransmitRemoteFifoEnableAll), the incoming remote frames
are passed on for auto transmission through a FIFO.
Otherwise, the remote request is stored in the transmit object
lists, which are polled for transmission of data frames.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost remote transmit requests are
recognized, counted and reported to the application.

Polling is processed from low to high object numbers and
CAN1 before CAN2.

NOTE:
The remote frame is only answered automatically after the
first call of CANPC_supply_object_data or
CANPC_write_object for the related object. This assures
that no non-initialized data are transmitted. If a remote
frame is received before the first call of
CANPC_supply_object_data or CANPC_write_object an
error is reported to the application.

4-8 Software description

Application

API

Transmit object
list CAN1

(max. 200 entries)

Transmit object
list CAN2

(max. 200 entries)

Receive object
list CAN1

(max. 200 entries)

Receive object
list CAN2

(max. 200 entries)

Object
data

Transmit
ACK

Object
data

FIFO or
Polling

FIFO or
Polling

Receive
Events

Object
data

Object
data

FIFO or
Polling

Firmware

Transmit
requests

Receive
Events

Receive
Events

CAN 1 CAN 2

Transmit
ACK

Transmit
ACK

Fig. 4-3: Dynamic object buffer mode

Software description 4-9

4.3.3 Static object buffer mode (only for 11-bit identifiers)

The static object buffer mode is automatically chosen if none
of the other operating modes is enabled (Fig. 4-7). In that
mode the CAN messages and their data are stored in 2 object
lists for CAN 1, one for transmission and one for reception
(see Fig. 4-4). CAN 2 is automatically operating in FIFO mode
(see section 4.3.1).

In opposition to the dynamic object buffer, the object lists holds
all 2048 standard CAN identifiers (11 bit format according to
CAN 2.0A spec.). The objects of these lists can be optionally
defined by the application using CANPC_define_object.
Hence, an individual configuration of the handling for each
object is possible.

It is possible to access the object data at any time. Thus, the
application always has a consistent representation of the
complete "CAN database" of CAN 1 (only for CAN 2.0A spec.).

The handling of transmission requests, received messages,
transmit acknowledges and remote frames on CAN1 can be
configured individually by the application using
CANPC_initialize_interface. The interface offers two main
mechanisms for these interaction tasks, FIFO or polling.

4-10 Software description

4.3.3.1 Transmission request

CAN1:
A transmit request is commanded by CANPC_send_object or
CANPC_write_object.

If the transmit FIFO is configured (TransmitReqFifoEnable),
the transmit request for an object on CAN 1 is transferred
through a FIFO to the CAN 1. Otherwise, the transmit object
list is polled for objects to be sent. This polling can be limited to
those transmit objects defined using CANPC_define_object.
Otherwise, all transmit objects are polled (TransmitPollAll).

The FIFO has a maximum of 255 entries. An overrun of the
FIFO is recognized and reported to the application.

Polling is processed from low to high identifiers.

CAN2:
The Transmit FIFO of CAN2 handles all transmit requests of
the application entered by CANPC_send_data2. If the
Transmit FIFO gets full new transmit requests are denied and
the application is informed.

4.3.3.2 Transmit acknowledges

CAN1:
On successful transmission of an object a corresponding
acknowledge can inform the application by using
CANPC_read_ac.

The acknowledges can be switched on or off for either all
objects (TransmitAckEnableAll) or for each transmit object by
definition (TransmitAckEnable).

If the transmit acknowledge FIFO is configured
(TransmitAckFifoEnable), the transmit acknowledges of an
object are transferred through a FIFO to the application.
Otherwise, the transmit object list is polled for acknowledged
objects.

Software description 4-11

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost transmit acknowledge messages
are recognized, counted and reported to the application.

Polling is processed from low to high object numbers.

CAN2:
Transmit acknowledges on successful transmission are
transferred to the application through the ‘Receive FIFO’.

4.3.3.3 Receive events

CAN1:
By calling CANPC_read_ac the application is informed about
reception of objects and other bus events.

If ReceiveEnableAll is set, all data and remote frames are
received by the interface. Otherwise, the user can define the
objects to be received (CANPC_define_object).

Furthermore, the report of a received object to the application
and generation of an interrupt can be switched on/off either
globally (ReceiveIntEnableAll) or individually by definition
(ReceiveIntEnable). The data of the received object are
entered into the receive object list in any case.

If FIFO mode is configured (ReceiveFifoEnable), the received
objects and status messages are transferred through a FIFO
to the application. Otherwise, the receive object list is polled for
received messages.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost messages are recognized,
counted and reported to the application.

Polling is processed from low to high identifiers and can be
limited to those receive objects defined using
CANPC_define_object. Then the objects are polled in
succession of their definition. Otherwise, all receive objects are
polled (ReceivePollAll).

4-12 Software description

CAN2:
Received messages and bus events are transferred to the
application through the ‘Receive FIFO’.

4.3.3.4 Remote frames

CAN1:
If automatic transmission on a reception of a remote frame is
configured by definition for an object (AutoRemoteEnable) or
globally (AutoRemoteEnableAll), the interface sends
automatically a data frame with the same identifier. Otherwise,
the remote request is stored in the transmit object list, which is
polled for transmission of data frames.

If the FIFO for auto remote transmission is configured
(TransmitRemoteFifoEnableAll), the incoming remote frames
are passed on for auto transmission through a FIFO.
Otherwise, they are stored in the object list, which is polled for
transmission of data frames.

The FIFO has a maximum of 255 entries. An overrun of the
FIFO and the number of lost remote transmit requests are
recognized, counted and reported to the application.

CAN2:
Remote frames are passed through the receive FIFO to the
application.

NOTE:
The remote frame is only answered automatically after the
first call of CANPC_supply_object_data or
CANPC_write_object for the related object. This assures
that no non-initialized data are transmitted. If a remote
frame is received before the first call of
CANPC_supply_object_data or CANPC_write_object an
error is reported to the application.

Software description 4-13

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their
identifiers in order to make prioritization of objects with
low identifiers the same as on the CAN bus. This is true
for static as well as for dynamic object buffer mode.

4-14 Software description

Application

API

Transmit object
list CAN1

(max. 200 entries)

Receive object
list CAN1

(max. 200 entries)

Object
data

Transmit
ACK

FIFO or
Polling

FIFO or
Polling

Receive
Events

Object
data

FIFO or
Polling

Firmware

Transmit
requests

CAN 1 CAN 2

Receive FIFO
CAN2

(max. 255 entries)

Transmit FIFO
CAN2

(max. 255 entries)

Transmit
requests

Transmit
request

Receive Events
Transmit ACK

Receive Events
Transmit ACK

Receive Events
Transmit ACK

Fig. 4-4: Static object buffer mode

Software description 4-15

4.3.4 Comparison FIFO to object buffer mode

The advantage of object buffer compared to FIFO operation is
that the last received data of an object are always available to
the application in all cases. Even though, if older receptions
still have not been processed. No data are lost if an overrun of
the object received message FIFO occurs.

When the transmit request FIFO is full the data can be
buffered, and the application is freed of this task. Hence, the
transmit request is denied but the data are buffered anyway.

It is possible at any time to read out or write in the receive and
transmit objects. Thus, the application always has access to
the provided CAN database.

An additional advantage of the object buffer is that data of
objects are available to the application very quickly after they
are received from the bus, even if the application still has not
processed older messages. Accordingly, messages can be
transmitted before lower priority messages, even if the lower
priority messages were requested first. This is true if the object
buffer is operated in polling mode.

FIFO operation offers the advantage that data of an object or
an identifier are not overwritten by other received data of the
same object until they are evaluated by the application
(overrun). Therefore, when transmitting, a sequence of data of
an object can be buffered and transmitted.

Furthermore, FIFO provides full access to all identifiers
possible on CAN1 and CAN2, even for extended identifier. No
relation between identifier and defined object number has to be
processed by the application.

4-16 Software description

4.4 Implementation
The CAN-AC2-PCI board has to be programmed in a specific
sequence of instructions for proper operation.

NOTE:
For proper spelling of the library functions ‘CANPC_’ has
to be added to the instruction syntax in Fig. 4-5, 4-6 and
4-7.

4.4.1 Board initialization

After program start the CAN interface must be initialized by
INIPC_initialize_board. Second CANPC_reset_board has to be
called to load the firmware.

4.4.2 CAN initialization

The CAN chips are placed into reset status using
CANPC_reset_chip. Then, CAN specific parameters are
initialized using the CANPC_initialize_chip for bit timing,
CANPC_set_acceptance for filtering CAN messages and
CANPC_set_output_control for the physical signal
specification.

After the CAN specific initialization it must be decided whether
FIFO, static or dynamic object buffer are to be used (see chap.
5.1).

Software description 4-17

4.4.3 FIFO mode

The function CANPC_enable_fifo must be called to enable the
FIFO mode (Fig. 4-5). As an option, CAN channel 1 or 2 can
be initialized for confirmation of successful transmissions using
CANPC_enable_fifo_transmit_ack.

Furthermore the error frame detection can be initialized by
CANPC_enable_error_frame_detection. If an interrupt is used,
it is configured by CANPC_set_interrupt_event.

The function CANPC_start_chip ends the initialization and
places the CAN controller in operating status. From this point
onwards transmit jobs can be issued and incoming data can
be monitored.

To monitor the bus events CANPC_read_ac should be polled
or has to be implemented in an interrupt thread.

4-18 Software description

INIPC_initialize_board

CANPC_reset_board

CANPC_reset_chip

CANPC_initialize_chip

CANPC_set_acceptance

CANPC_set_output_control

CANPC_set_mode

CANPC_initialize_chip2

CANPC_set_acceptance2

CANPC_set_output_control2

CANPC_set_mode2

CANPC_enable_fifo_transmit_ack2

CANPC_start_chip

CANPC_read_ac

CANPC_send_data2

CANPC_send_remote_data2

CANPC_get_version

CANPC_reinitialize

CANPC_get_time

CANPC_get_bus_state

CANPC_read_xmt_fifo_level

CANPC_read_rcv_fifo_level

CANPC_reset_xmt_fifo

CANPC_reset_rcv_fifo

CANPC_reset_lost_msg_counter

CANPC_set_trigger2

INIPC_close_board

Terminator

Start

CANPC_send_data

CANPC_send_remote_data

CANPC_set_trigger

CANPC_enable_fifo_transmit_ack

CANPC_enable_fifo

Fig. 4-5: Flow chart programming FIFO mode

Software description 4-19

4.4.4 Object buffer mode

The operating modes of object buffer are enabled using
CANPC_initialize_interface. Beforehand the object buffer can
be switched to dynamic object buffer (Fig. 4-6) by calling
CANPC_enable_dyn_obj_buf. Otherwise the static object
buffer is chosen by default (Fig. 4-7).

Object specific settings can be made by calling
CANPC_define_object. The definition is necessary in dynamic
object buffer mode but optionally in static object buffer mode.

The function CANPC_start_chip ends the initialization and puts
the CAN-AC2-PCI in operating status. From this point onward
transmit jobs can be issued and incoming data can be
monitored.

To monitor the bus events CANPC_read_ac or
CANPC_read_rcv_data are polled by the application.

NOTE:
The interrupt is only supported in FIFO mode.

Using it in object buffer mode can cause false function
return codes of certain API functions due to interruption
of their handshake communication with the firmware.

Since the static object buffer is used only for CAN channel 1,
the second channel can be accessed in FIFO mode
(send_data2, send_remote2).

The dynamic object buffer interfaces both CAN channels via
the object lists.

4-20 Software description

INIPC_initialize_board

CANPC_reset_board

CANPC_reset_chip

CANPC_initialize_chip

CANPC_set_acceptance

CANPC_set_output_control

CANPC_set_mode

CANPC_initialize_chip2

CANPC_set_acceptance2

CANPC_set_output_control2

CANPC_set_mode2

CANPC_enable_dyn_obj_buf

CANPC_initialize_interface

CANPC_define_object CANPC_define_object2

CANPC_start_chip

CANPC_send_object

CANPC_read_xmt_object

CANPC_supply_object

CANPC_read_rcv_object

CANPC_write_object

CANPC_supply_rcv_object

CANPC_define_cyclic

CANPC_read_ac

CANPC_send_object2

CANPC_read_xmt_object2

CANPC_supply_object2

CANPC_read_rcv_object2

CANPC_write_object2

CANPC_supply_rcv_object2

CANPC_define_cyclic2

CANPC_reinitialize

CANPC_get_time

CANPC_get_bus_state

CANPC_read_xmt_fifo_level

CANPC_read_rcv_fifo_level

CANPC_reset_xmt_fifo

CANPC_reset_rcv_fifo

CANPC_reset_lost_msg_counter

CANPC_set_trigger CANPC_set_trigger2

INIPC_close_board

Terminator

Start

CANPC_send_remote_object CANPC_send_remote_object2

CANPC_get_version

Fig. 4-6: Flow chart programming dynamic object buffer mode

Software description 4-21

INIPC_initialize_board

CANPC_reset_board

CANPC_reset_chip

CANPC_initialize_chip

CANPC_set_acceptance

CANPC_set_output_control

CANPC_set_mode

CANPC_initialize_chip2

CANPC_set_acceptance2

CANPC_set_output_control2

CANPC_set_mode2

CANPC_initialize_interface

CANPC_define_object CANPC_enable_fifo_transmit_ack

CANPC_start_chip

CANPC_send_object

CANPC_read_xmt_object

CANPC_supply_object

CANPC_read_rcv_object

CANPC_send_remote_object

CANPC_supply_rcv_object

CANPC_read_ac

CANPC_send_data2

CANPC_send_remote_data2

CANPC_get_version

CANPC_reinitialize

CANPC_set_trigger

CANPC_set_trigger2

INIPC_close_board

Terminator

Start

CANPC_write_object

CANPC_get_time

CANPC_get_bus_state

CANPC_read_xmt_fifo_level

CANPC_read_rcv_fifo_level

CANPC_reset_xmt_fifo

CANPC_reset_rcv_fifo

CANPC_reset_lost_msg_counter

Fig. 4-7: Flow chart programming static object buffer mode

4-22 Software description

4.4.5 Exit board

The application should be finished after calling
INIPC_close_board. This function releases the system
resources locked for the application by INIPC_initialize_board.

Otherwise, the application may have problems to get the
handle to the DPRAM a second time without system exit (e.g.
applications with LABView a.o.).

NOTE:
If INIPC_close_board is not called at the end of operation
the handle to the DPRAM may remain locked for the
surrounding process. Thus, it can’t be accessed by a
succeeding initialization without system exit (e.g.
applications with LABView).

This concerns all default exits of the application as well
as program termination by errors which occur after
successful call to INIPC_initialize_board.

Software description 4-23

4.5 Interrupt processing

4.5.1 Interrupt events

For many applications it is useful to be informed by interrupt
about occurrence of CAN events. Otherwise, the CAN-AC2-
PCI must be polled for new events which requires more PC
processor time.

The firmware triggers a hardware interrupt to the PC on the
following CAN events:

• Reception of data, remote and error frames

• Acknowledge on successful transmissions if enabled

• Change of bus state

• The hardware interrupt number is automatically assigned to
the CAN-AC2-PCI board by the operating system. The
application is informed about the used interrupt number by
the parameter Interrupt in the resource structure of
INIPC_initialize_board.

NOTE:
The interrupt is only supported in FIFO mode.

Using it in object buffer mode can cause false function
return codes of certain API functions due to interruption
of their handshake communication with the firmware.

4-24 Software description

4.5.2 WIN32 interrupt programming

If the CAN-AC2-PCI driver detects an interrupt it triggers a
WIN32 event which can be evaluated by the application to
control a WIN32 process or thread. Thus, an application or
thread can be created which is only processed in case of the
interrupt.

As a prerequisite the interrupt event must be created by the
application. The hardware driver must be supplied with the
handle of this WIN32 event by API function
CANPC_set_interrupt_event. Furthermore a thread must be
created and started which gets into WAIT status until the
interrupt event is triggered by the driver. Then, the necessary
interrupt activities can be processed and the thread gets back
into WAIT status.

Before termination of the WIN32 process the created
resources should be released for proper operation.

The application of the WIN32 interrupt is exemplary
implemented in the test program ‘Can_test.exe’. The interrupt
relevant functions are sampled in ‘Intexmpl.c’ in ‘Source’
directory of the installed software. This C source code provides
macro functions for initialization and termination of the interrupt
handling as well as an interrupt service thread which may be
linked to a customer application.

Software description 4-25

4.6 Description of the API functions

4.6.1 INIPC_initialize_board

int INIPC_initialize_board(

CANPC_RESSOURCES cp_resources)

Function Parameters:

Table 4-1: Elements of structure CANPC_RESSOURCES:

Type/Name Description
unsigned short
uSocket

Not used (only for compatibility to
CANcard API)

unsigned short
uInterrupt

Returns interrupt line enabled for the
CAN-AC2-PCI (driver information)

unsigned long
uIDPRAMemBase

Returns DPRAM base address enabled
for the CAN-AC2-PCI
(driver information)

unsigned long
uIDPRMemSize

Returns DPRAM size enabled for the
CAN-AC2-PCI (driver information)

ChipType
uChip

Not used (only for compatibility to
CANcard API)

unsigned short
uIOAdress

Not used (only for compatibility to
CANcard API)

unsigned short
uRegisterBase

Not used (only for compatibility to
CANcard API)

INIPC_initialize_board enables the memory access to the
DPRAM of the CAN-AC2-PCI. Thus, it is necessarily called
before any other API function.

If the DPRAM access is denied the function returns an error
code which corresponds to the error cause. The error codes of
INIPC_initialize_board are documented in Chapter 6.

4-26 Software description

The parameters of the resource structure are not to be set by
the application. Some of the variables are returned with the
related values of the driver setup (see Table 4-1).

NOTE:
If CANPC_initialize_board fails, other API functions
should not be called since the non-initialized memory
handle may cause an access violation.

Function Return Codes:

0: Initialization successful
others: See error codes in Chapter 6

Software description 4-27

4.6.2 CANPC_reset_board

int CANPC_reset_board(void)

CANPC_reset_board loads and resets the firmware on the
interface. The firmware is included in the Windows DLL.

If the firmware download fails the function returns an error
code which corresponds to the error cause. The error codes of
CANPC_reset_board are documented in Chapter 6.

Function Return Codes:

0: Loading and reset successful
Others: see Chapter 6

4-28 Software description

4.6.3 CANPC_reset_chip

int CANPC_reset_chip(void)

This function terminates a possible bus operation and places
the CAN chips into reset status.

After reset the bit timing, acceptance register and output
control register have to be defined before the CAN controller
are started by the related API functions.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-29

4.6.4 CANPC_get_version

int CANPC_get_version(

int *sw_version,
int *fw_version,
int *hw_version,
int *license,
int *can_chip_type);

This function provides useful information the version numbers
of hard-, soft- and firmware, license and CAN chip types of the
CAN-AC2-PCI.

It can be called after the firmware is loaded by
CANPC_reset_board.

Function Parameters:

• sw_version:
 Pointer to the entry of the version number of driver software.

 The number is encoded as *sw_version / 100 as the main
version number; *sw_version % 100 refers to the subordinate
part of the number.

• fw_version:
 Pointer to the entry of the version number of the firmware.

 The number is encoded as *fw_version / 100 as the main
version number; *fw_version % 100 refers to the subordinate
part of the number.

• hw_version:
 Pointer to the entry of the version number of the hardware.

 The number is encoded as *hw_version % 0x100H as the
main version number; *hw_version / 0x100H refers to the
subordinate part of the number.

4-30 Software description

• licence:
 Pointer entry of the license type of the CAN-AC2-PCI

 01H: Licensed for operation with interface
software

 02H: Licensed for operation with CANalyzer
software

• can_chip_type:
Pointer to entry containing the last three digits of the CAN chip
type.

can_chip_type[0]: CAN 1
can_chip_type[1]: CAN 2

5: NEC72005 (CANcard)

1000: SJA1000 (CANcard-SJA)

(CAN-AC2/PCI)

527: Intel 82527 (CAN-AC2/527)

200: Philips 82C200 (CAN-AC2)

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-31

4.6.5 CANPC_get_serial_number

CANPC_get_serial_number(unsigned long *SerialNumber)

This function returns the serial number of the CAN-AC2-PCI in
*SerialNumber.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-32 Software description

4.6.6 CANPC_initialize_chip[2]

int CANPC_initialize_chip(

int presc,
int sjw,
int tseg1,
int tseg2,
int sam)

int CANPC_initialize_chip2(

int presc,
int sjw,
int tseg1,
int tseg2,
int sam)

Function Parameters:

Table 4-2: Bit timing parameter

Name Description Range
presc: CAN-Prescaler [1..32]
sjw: CAN-Synchronisation-Jump-Width [1..4]
tseg1: CAN-Time-Segment 1 [1..16]
tseg2: CAN-Time-Segment 2 [1..8]
sam: Number of samples [0, 1]

The functions define the bit timing (baud rate) of the CAN
chips. CANPC_initialize_chip initializes CAN chip 1,
CANPC_initialize_chip2 initializes CAN chip 2. Parameters
presc, sjw, tseg1 and tseg2 represent logical values that are
used to describe the bit timing. These values are converted
and written to the bus timing register 1 and 2 of the Philips
SJA1000.

The baud rate is calculated by the following formula, whereby
certain limit conditions must be maintained:

Software description 4-33

fcrystal
Baud rate = ---

2 * presc * (1 + tseg1 + tseg2)

The crystal frequency fcrystal is 16 MHz.

The limitations of the bit timing of the used CAN controllers
lead to following conditions:

8 ≤ (1+ tseg1 + tseg2) ≤ 25

tseg1 + tseg2 ≥ 2 * sjw

tseg2 ≥ sjw

The prescaler divides the crystal frequency by presc to build
the clock cycle time ∆t.

The parameter sam defines how many samples are taken to
detect the bit level.

sam = 0 → 1 sample (high speed buses)

sam = 1 → 3 samples (low/medium speed buses)

The sampling point is defined at the edge between time
segment 1 and time segment 2. It is recommended to place
the sampling point between 50% and 80% of the bit time. At
high baud rates the communication is more stable if the
sample is taken in the last quarter of the bit time.

The synchronization jump width is used to compensate the
time shifts between the different CAN nodes in the network. It
defines the maximum number sync of clock cycles by which
the time segment 1 may be lengthened and time segment 2
shorted during resynchronization.

4-34 Software description

Bit time

∆t

Tseg1 Tseg2

Sync.
Seg.

Sample point(s)

time

Fig. 4-8: Bit period

Table 4-3: Baud rate examples

baud rate presc sjw tseg1 tseg2
1 Mbaud 1 1 4 3
800 kBaud 1 1 6 3
500 kBaud 1 1 8 7
250 kBaud 2 1 8 7
125 kBaud 4 1 8 7
100 kBaud 4 4 11 8
10 kBaud 32 4 16 8

Function Return Codes:

 0: Initialization successful
-1: Parameter error
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-35

4.6.7 CANPC_set_mode[2]

int CANPC_set_mode(

int SleepMode,
int SpeedMode)

int CANPC_set_mode2(

int SleepMode,
int SpeedMode)

Function Parameters:

- SleepMode: default: 0
- SpeedMode: default: 0

CANPC_set_mode and CANPC_set_mode2 are dummy
function to ensure compatibility to other CAN interfaces with
different CAN controllers.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-36 Software description

4.6.8 CANPC_set_output_control[2]

int CANPC_set_output_control (int OutputControl)
int CANPC_set_output_control2 (int OutputControl)

Function Parameters:

- OutputControl: Input/Output-Control-Register
[0 to FFHex or -1]

This function defines the setting of the Output Control Register
(OCR) of the CAN chip. This is used to adapt the CAN chip to
the physical bus interface being used.
CANPC_set_output_control initializes CAN1, and
CANPC_set_output_control2 initializes CAN2.

If the CAN-AC2-PCI with CAN controller Philips SJA1000 is
used with the CAN High Speed interface (default) the output
control register must be set to a value of FBHex. If you like to
adapt the interface to a different bus physic consult the SJA
data sheet for the required OCR setting.

Setting the OCR=03H switches off the transmission lines Tx0
and Tx1 of the CAN controller. Thus, the CAN-AC2-PCI can’t
send any data frame or any acknowledge bit on received
messages. Thus, the interface can monitor the activities on the
CAN network without influencing it.

The OCR specification of the Philips SJA1000 is described in
Table 4-4 to 4-7.

The default values for CAN High Speed can also be chosen
automatically by passing the default parameter -1 which
assures compatibility with other using CAN High Speed
Standard.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

Software description 4-37

Output control specification of Philips SJA1000:

Table 4-4: Output control Philips SJA1000

Bit Function
7 OCTP1
6 OCTN1
5 OCPOL1
4 OCTP0
3 OCTN0
2 OCPOL0
1 OCMODE1
0 OCMODE0

Table 4-5: Output control mode of Philips SJA1000

OCMODE1 OCMODE0 Function
1 0 Normal Mode (TX0 and TX1

CAN Output)
1 1 Normal mode (Tx0 CAN Output,

TX1 Bus Clock)
0 0 not implemented
0 1 not implemented

The voltage levels at the CAN outputs TX0 and TX1 depend
on both the output configuration, which is determined by
OCTPx and OCTNx, and the output polarity, which is
determined by OCPOLx. Table 4-7 shows output status as a
function of these settings for Philips SJA00.

4-38 Software description

Table 4-6: Configuration of CAN output pins TX0 and TX1

Operating
Mode

O
C
T
P
x

O
C
T
N
x

O
C
P
O
L
x

TXD TPx TNx Level at TXx

FLOAT 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

off
off
off
off

off
off
off
off

high resistance
high resistance
high resistance
high resistance

PULL
DOWN

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

off
off
off
off

on
off
off
on

logic "0"
high resistance
high resistance
logic "0"

PULL UP 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

off
on
on
off

off
off
off
off

high resistance
logic "1"
logic "1"
high resistance

PUSH
PULL

1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

off
on
on
off

on
off
off
on

logic "0"
logic "1"
logic "1"
logic "0"

TXx: Output pin x, x=0 for TX0, x=1 for TX1

TPx: Transistor that switches from supply voltage to TXx

TNx: Transistor that switches from TXx to ground

TXD: Data to be transmitted, 0=dominant, 1=recessive

Software description 4-39

4.6.9 CANPC_set_acceptance[2]

int CANPC_set_acceptance(

unsigned int AccCodeStd,
unsigned int AccMaskStd,
unsigned long AccCodeXtd,
unsigned long AccMaskXtd)

int CANPC_set_acceptance2(

unsigned int AccCodeStd,
unsigned int AccMaskStd,
unsigned long AccCodeXtd,
unsigned long AccMaskXtd)

Function Parameters:

Table 4-7: Filter parameters

Name Description Range
AccCodeStd: Acceptance code for

standard frames
[0 to 7FFHex]

AccMaskStd: Acceptance mask for
standard frames

[0 to 7FFHex]

AccCodeXtd: Acceptance code for
extended frames

[0 to 1FFFFFFFHex]

AccMaskXtd: Acceptance mask for
extended frames

[0 to 1FFFFFFFHex]

The function CANPC_set_acceptance initializes the
acceptance filter of the CAN controller.
CANPC_set_acceptance sets the acceptance registers of
CAN1, CANPC_set_acceptance2 sets the acceptance
registers of CAN2.

The acceptance filter defines which identifiers should be
passed into the receive buffer of the CAN controller.

4-40 Software description

To receive an identifier all bits of the identifier that were
initialized as 1 in the acceptance mask must match the
corresponding bit in the acceptance code. A "0" in the
acceptance mask register means "Don't care" for the identifier
bit at this position.

The parameters are converted and written into the acceptance
code and mask registers of the Philips SJA1000.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-41

4.6.10 CANPC_enable_fifo

int CANPC_enable_fifo(void)

FIFO operation of the interface is activated calling this function
(see Section 4.1.1 "FIFO Operation"). If this function is not
used, then the CAN-AC2-PCI operates with an object buffer
mode.

NOTE:
The static object buffer is not usable for 29bit identifiers.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-42 Software description

4.6.11 CANPC_enable_error_frame_detection

int CANPC_enable_error_frame_detection(void)

This function enables the detection of error frames by the
application. Receiving an error frame sets the function return
value of CANPC_read_ac to 15.

NOTE:
Error frame detection is only available in FIFO mode and
for channel 2 in static object buffer.

Function Return Codes:

 0: Function successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-43

4.6.12 CANPC_enable_timestamps

int CANPC_enable_timestamps(void)

This is a dummy function which is only necessary to provide
API compatibility to the CAN-AC2 ISA interface.

Function Return Codes:

 0: Function successful

4-44 Software description

4.6.13 CANPC_enable_fifo_transmit_ack[2]

int CANPC_enable_fifo_transmit_ack(void)
int CANPC_enable_fifo_transmit_ack2(void)

CANPC_enable_fifo_transmit_ack enables the report of
successful transmit jobs in FIFO mode to the PC application.

If a transmission of a data or remote frame is acknowledged by
another CAN device a related message for the application is
entered into the receive FIFO and the interrupt is set. Reading
the receive FIFO by CANPC_read_ac the acknowledges are
reported by a special function return value (see section
4.3.26).

NOTE:
This function is only applicable in FIFO mode and for
channel 2 in static object buffer mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-45

4.6.14 CANPC_enable_dyn_obj_buf

int CANPC_enable_dyn_obj_buf(void)

CANPC_enable_dyn_obj_buf configures the API to run in
dynamic object buffer mode (see section 4.1.2). If this function
is not used, then the CAN-AC2-PCI operates with the static
object buffer or in the FIFO mode (if CANPC_enable_fifo has
been called).

NOTE:
The static object buffer is usable for 29bit identifiers.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-46 Software description

4.6.15 CANPC_initialize_interface

int CANPC_initialize_interface(

int ReceiveFifoEnable,
int ReceivePollAll,
int ReceiveEnableAll,
int ReceiveIntEnableAll,
int AutoRemoteEnableAll,
int TransmitReqFifoEnable,
int TransmitPollAll,
int TransmitAckEnableAll,
int TransmitAckFifoEnable,
int TransmitRmtFifoEnable)

CANPC_initialize_interface configures properties and structure
the object buffer (see sections 4.1.2 and 4.1.3). It may not be
used in FIFO operation, i.e. after CANPC_enable_fifo has
been called.

Function Parameters:

• ReceiveFifoEnable:
Type of receive message handling from firmware to PC
application.

1: Receive messages of data frames or remote frames
are transferred to the PC through the receive
message FIFO (see section 4.1.1).

0: The PC ascertains receive messages of data frames
or remote frames by polling the objects in the receive
object lists using the function CANPC_read_ac (see
5.1.2 and 5.1.3). Under certain conditions this can
cause a longer running time of the function
CANPC_read_ac, and can therefore result in lower
throughput rates.

Software description 4-47

- ReceivePollAll:
This flag is only meaningful for ReceiveFifoEnable = 0 with
static object buffer (should be 0 with dynamic object buffer).

1: Polling of all receive objects when CANPC_read_ac
is called (see section 4.1.3)

0: Polling of only those receive objects which have
been defined using CANPC_define_object (see
Section 4.1.2 and 4.1.3)

- ReceiveEnableAll:
This flag is only meaningful with static object buffer (must be 0
with dynamic object buffer).

1: All data frames and remote frames on CAN 1 with
standard identifiers are received. No receive objects
need to be defined (However: CANPC_define_object
can be used nevertheless, in order to activate
receive objects for polling by the application under
the conditions ReceivePollAll = 0 and
ReceiveFifoEnable = 0)

0: All receive objects that are passed to the PC must
be defined beforehand using CANPC_define_object.
Objects that are not defined using
CANPC_define_object are not received by the (filter
functionality).

4-48 Software description

- ReceiveIntEnableAll:
This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary object (declared using
CANPC_define_object or if ReceiveEnableAll = 1)
the receive message is passed to the PC
application. Additionally, an interrupt is generated to
the PC. The application program can read the object
using CANPC_read_ac.

0: Receipt of an object is only reported to the PC (with
interrupt) if the object has been declared in
CANPC_define_object with ReceiveIntEnable = 1.
Otherwise the data of the object will indeed be
entered into object buffer (and they can be read
using CANPC_read_rcv_data), but no information is
generated for the application regarding receipt of the
object (readable by CANPC_read_ac).

- AutoRemoteEnableAll:
This flag is only meaningful while ReceiveEnableAll = 1 with
static object buffer (should be 0 with dynamic object buffer).

1: When receiving an arbitrary remote frame the
interface independently transmits a data frame with
the same identifier (see 5.1.3).

0: When receiving a remote frame the interface only
transmits a data frame with the same identifier if the
corresponding receive object has been declared in
CANPC_define_object with AutoRemoteEnable = 1.
Otherwise the remote frame is reported to the PC
(calling CANPC_read_ac or
CANPC_read_rcv_data). The PC must transmit an
explicit response (data frame) then.

Software description 4-49

NOTE:
A data frame is transmitted after the first call of
CANPC_supply_object_data or CANPC_write_object
initialized the object data. A remote frame arriving before
data initialization results in error report -6 in the function
CANPC_read_ac.

- TransmitReqFifoEnable:

1: Transmit jobs for data frames or remote frames are
transferred to the CAN bus through the transmit job
FIFO (see sections 4.1.2 and 4.1.3)

0: Transmit jobs for data frames or remote frames are
ascertained by the firmware by polling the objects in
the transmit object lists (see sections 4.1.2 and
4.1.3).

- TransmitPollAll:
This flag is only meaningful for TransmitReqFifoEnable = 0
with static object buffer (should be 0 with dynamic object
buffer).

1 Polling of all transmit objects (see section 4.1.3)
0: Polling of only those transmit objects that have

been defined using CANPC_define_object (see
section 4.1.2 and 4.1.3)

4-50 Software description

- TransmitAckEnableAll:

1: The interface acknowledges (in conjunction with an
interrupt to the PC) all data frames and remote
frames after successful transmission on the bus.
This acknowledgment can be read in
CANPC_read_ac or CANPC_read_xmt_data (see
section 4.1.2 and 4.1.3).

0: All objects whose data frames and remote frames
are to be acknowledged by the Interface after
successful transmission, must have been declared
with the parameter TransmitAckEnable=1 in
CANPC_define_object. Transmission of all other
objects is not reported to the application.

- TransmitAckFifoEnableAll:

1: Acknowledgements of transmitted data frames or
remote frames are transferred to the application
through the transmit-acknowledge-FIFO (see
sections 4.1.2 and 4.1.3).

0: Acknowledgements of transmitted data frames or
remote frames are ascertained by polling of the
objects in the interface (see sections 4.1.2 and
4.1.3). Under certain conditions this can cause a
longer running time of the function CANPC_read_ac
and thus lead to lower throughput rates of the
interface.

Software description 4-51

- TransmitRmtFifoEnableAll:
This parameter selects the handling mechanism for objects
with Auto Remote Control configured (AutoRemoteEnable is
set).

1: Incoming remote frames are buffered in a FIFO and
are passed on for transmission of data frames (see
sections 4.1.2 and 4.1.3").

0: Incoming remote frames are stored in object lists,
which are polled for transmission of data frames
(see section 4.1.3").

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-5: DPRAM size conflict

(stat. obj. buf. requires 64kByte)
-6 Parameter conflict
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-52 Software description

4.6.16 CANPC_define_object[2]

int CANPC_define_object(

unsigned long Ident,
int *ObjectNumber,
int Type,
int ReceiveIntEnable,
int AutoRemoteEnable,
int TransmitAckEnable)

int CANPC_define_object2(

unsigned long Ident,
int *ObjectNumber,
int Type,
int ReceiveIntEnable,
int AutoRemoteEnable,
int TransmitAckEnable)

The function CANPC_define_object defines and configures the
communication objects of the transmit and receive object lists
in object buffer mode. CANPC_define_object2 for channel 2
can only be used in the dynamic object buffer mode.

In dynamic object buffer mode all used objects have to be
defined, while in static object buffer mode the function can be
used optionally for individual configuration of the object
handling.

In static object buffer mode the returned object number equals
the identifier. But in dynamic object buffer mode it corresponds
to the succession of definition in the related object list.

NOTE:
The API functions handle the objects by their object
number. Hence, the user is recommended to setup a table
of relations between identifier and object number in
dynamic object buffer mode.

Software description 4-53

Function Parameters:

- Ident:
Identifier

[0 to 7FFHex] for standard objects
[0 to 1FFFFFFFHex] for extended objects

- ObjectNumber:
In the mode dynamic object buffer the object number in the
related object list is returned in this parameter. It is a handle for
the online access to this object (CANPC_send_object,
CANPC_read_rcv_data...).

The identifier itself will no longer be referenced. In the mode
static object buffer the object number is equally to the
identifier.

- Type:
Direction of transmission and type of identifier

0: Standard receive object: Data frames and remote
frames with standard identifiers (11 bit) can be
received.

1: Standard transmit object: Data frames and remote
frames with standard identifiers (11 bit) can be
transmitted.

2: Extended receive object: Data frames and remote
frames with extended identifiers (29 bit) can be
received.

3: Extended transmit object: Data frames and remote
frames with extended identifiers (29 bit) can be
transmitted.

4-54 Software description

- ReceiveIntEnable (only for receive objects):

1: When receiving an object with the identifier Ident the
receive message is passed to the PC application.
Additionally, an interrupt is generated to the PC. The
application program can read the object using
CANPC_read_ac.

0: After receipt of an object the object data are indeed
entered into object buffer (and they can be read
using CANPC_read_rcv_data), but no information is
generated for the application regarding receipt of the
object. No interrupt is generated to the PC.

- AutoRemoteEnable (only for receive objects):

1: When receiving a remote frame with the identifier
Ident the CAN-AC2-PCI transmits a data frame with
the same identifier independently form the PC (see
sections 4.1.2 and 4.1.3).

0: When receiving a remote frame the remote frame is
reported to the PC (can be read using
CANPC_read_ac or CANPC_read_rcv_data). The
PC must transmit an explicit response (data frame).

NOTE:
The remote frame is only answered automatically after the
first call of CANPC_supply_object_data or
CANPC_write_object. This assures that no non-initialized
data are transmitted. A remote frame arriving before the
first call of CANPC_supply_object_data or
CANPC_write_object results in error report -6 in the
function CANPC_read_ac. For the auto remote feature it
is necessary to define a transmit object as well as a
receive object with the same identifier.

Software description 4-55

- TransmitAckEnable (only for transmit objects):

1 A data frame or remote frame with the identifier Ident
is acknowledged (in conjunction with an interrupt to
the PC) after successful transmission. This
acknowledgement can be read using
CANPC_read_ac or CANPC_read_xmt_data (see
5.1.2 and 5.1.3).

0: A data frame or remote frame with the identifier Ident
is not acknowledged to the application after
successful transmission on the bus.

NOTE:
Please note that the objects defined first are also polled
first, and in this way a higher priority and a lower polling
time is maintained relative to the objects that follow. It is
sensible to define objects in the sequence of their
identifiers in order to make prioritization of objects with
low identifiers the same as on the CAN bus. This is true
for static as well as for dynamic object buffer mode.

Function Return Codes:

 0: Function successful
-1: Parameter error
-2 Dyn. Obj. buffer mode not enabled
-3: Error accessing DPRAM
-4: Timeout firmware communication
-5: DPRAM size conflict

(stat. Obj. buf. requires 64kByte)
-6. Parameter conflict
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-56 Software description

4.6.17 CANPC_optimize_rcv_speed

int CANPC_optimize_rcv_speed(void)

This is a dummy function (only for compatibility to the CAN-
AC2 V4.0 API from Softing).

Function Return Codes:

 0: Function successful

Software description 4-57

4.6.18 CANPC_start_chip

int CANPC_start_chip(void)

The function CANPC_start_chip puts the CAN controllers of
both CAN channels into operational mode. From now on
transmit jobs can be issued and reception of messages is
monitored.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-58 Software description

4.6.19 CANPC_define_cyclic[2]

int CANPC_define_cyclic(

int ObjectNumber,
unsigned int Rate,
unsigned int Cycles)

int CANPC_define_cyclic2(

int ObjectNumber,
unsigned int Rate,
unsigned int Cycles)

The function CANPC_define_cyclic defines cyclic transmission
of a communication object for CAN channel1 previously
defined by CANPC_define_object. (CANPC_define_cyclic2 for
channel 2)

The cyclic transmission is started and stopped by the value of
Rate. The settings (transmission start/stop) are put into
operation by the first call of CANPC_send_object or
CANPC_write_object for the object after the definition call.

Alternatively, the cyclic transmission is stopped automatically if
the defined number of cycles Cycles is reached.

NOTE:
If defined and started a cyclic object has to be stopped
before any succeeding redefinition. Redefinition of the
cycle rate while running the transmission results in faulty
transmission.
The transmitted data contents are defined by
CANPC_supply_object or CANPC_write_object. They can be
modified during cyclic transmission as well.

NOTE:
This function can only be used in dynamic object buffer
mode.

Software description 4-59

Function Parameters:

- ObjectNumber:
 Object reference returned by CANPC_define_object.

- Cycles [0..65535]:

0: Unlimited cyclic repetition
1..65535: Number of cyclic repetitions

- Rate [0..65535]:

0: Disable cyclic transmission (stop)
1..65535: Transmission rate in ms

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-60 Software description

4.6.20 CANPC_send_remote_object

int CANPC_send_remote_object(

int ObjectNumber,
int DataLength)

int CANPC_send_remote_object2(

int ObjectNumber,
int DataLength)

Function Parameters:

- ObjectNumber: Object number
- DataLength: Number of data bytes

This function initiates transmission of a remote frame for a
transmit object specified by the object number. The remote
frame has a data length 0; however, the data length code is
physically transmitted with the data length code DataLength.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO. Otherwise the transmit request is registered in
the transmit object list to be polled by the firmware.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3).

CANPC_send_remote_object transmits a remote frame on
CAN channel 1, CANPC_send_remote_object2 transmits a
remote frame on CAN channel 2.

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 4-61

Function Return Codes:

 0: Function successful
-1: Last request still pending
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-62 Software description

4.6.21 CANPC_supply_object_data[2]

int CANPC_supply_object_data(

int ObjectNumber,
int DataLength,
byte *pData)

int CANPC_supply_object_data2(

int ObjectNumber,
int DataLength,
byte *pData)

Function Parameters:

- ObjectNumber: Object number
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function enters current data into the object buffer of the
transmit object specified by ObjectNumber.

The data are not transmitted directly onto the bus, but rather
they are prepared for pickup by a remote frame (Auto Remote)
or a later transmit job (later: CANPC_send_object).

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3).

CANPC_supply_object_data supplies transmit data for an
object on CAN channel 1, CANPC_supply_object_data2
supplies transmit data for an object on CAN channel 2.

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 4-63

Function Return Codes:

 0: Function successful
-1: Request overrun
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-64 Software description

4.6.22 CANPC_supply_rcv_object_data[2]

int CANPC_supply_rcv_object_data(

int ObjectNumber,
int DataLength,
byte *pData),

int CANPC_supply_rcv_object_data2(

int ObjectNumber,
int DataLength,
byte *pData)

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be written in the object buffer

This function enters new data into the object buffer of the
specified receive object.

This function can be used for initialization of receive objects in
order to get reasonable values even before the first reception
of a respective data frame took place.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3).

CANPC_supply_rcv_object_data supplies receive data for an
object on CAN channel 1, CANPC_supply_rcv_object_data2
supplies receive data for an object on CAN channel 2.

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 4-65

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-66 Software description

4.6.23 CANPC_send_object[2]

int CANPC_send_object(

int ObjectNumber,
int DataLength),

int CANPC_send_object2(

int ObjectNumber,
int DataLength)

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes to be

transmitted

This function transmits a data frame for the transmit object
specified by ObjectNumber. The data frame has a length of
DataLength bytes. The data transmitted are the last entered
into transmit object buffer using CANPC_supply_object_data
or CANPC_write_object.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3). CANPC_send_object transmits a data frame on
CAN channel 1, CANPC_send_object2 transmits a data frame
on CAN channel 2.

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 4-67

Function Return Codes:

 0: Function successful
-1: Request overrun
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-68 Software description

4.6.24 CANPC_write_object[2]

int CANPC_write_object(

int ObjectNumber,
int DataLength,
byte *pData),

int CANPC_write_object2(

int ObjectNumber,
int DataLength,
byte *pData)

Function Parameters:

- ObjectNumber: ObjectNumber
- DataLength: Number of data bytes
- pData: Pointer to the address field of data to

be transmitted

This function performs an update of the data in the object
buffer of the transmit object specified by ObjectNumber. Then
a data frame is transmitted with DataLength bytes.

If TransmitFifoEnable is set the transmit job is entered into the
transmit FIFO to be further processed. Otherwise the transmit
request is registered in the transmit object list to be polled by
the firmware.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal
to the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3). CANPC_write_object transmits a data frame on
CAN channel 1, CANPC_write_object2 transmits a data frame
on CAN channel 2.

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Software description 4-69

Function Return Codes:

 0: Function successful
-1: Request overrun
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-70 Software description

4.6.25 CANPC_read_rcv_data[2]

int CANPC_read_rcv_data(

int ObjectNumber,
byte *pRCV_Data,
unsigned long *Time)

int CANPC_read_rcv_data2(

int ObjectNumber,
byte *pRCV_Data,
unsigned long *Time)

Function Parameters:

- ObjectNumber: Object number
- pRCV_Data: Pointer to the address field of data

being received
- Time: Pointer to a time stamp parameter

This function copies the data of the receive object specified by
ObjectNumber to the address pRCV_Data. The data are read,
even if no new data were received. 8 data bytes are always
copied to pRCV_Data, independent of the length of the
received data frame.

If data in the object buffer are overwritten before they were
read by the application or a remote request is not read quickly
enough an overrun is signaled to the application by the
function return code (overrun in object buffer).

If a remote frame was received the user is informed by a
specific return code.

Time returns the instant of the last received data with a
resolution of 1 microsecond (time stamp is reset in
CANPC_start_chip).

Software description 4-71

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3).

CANPC_read_rcv_data reads the data of an object of CAN
channel 1. CANPC_read_rcv_data2 reads the data of an
object on CAN channel 2.

NOTE:
 This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: No new data received
 1: Data frame received
 2: Remote frame received
-1: Receive data frame overrun
-2: Receive remote frame overrun
-3: Object no active
-7: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-72 Software description

4.6.26 CANPC_read_xmt_data[2]

int CANPC_read_xmt_data(

int ObjectNumber,
int *pDataLength,
byte *pXMT_Data),

int CANPC_read_xmt_data2(

int ObjectNumber,
int *pDataLength,
byte *pXMT_Data)

Function Parameters:

- ObjectNumber: ObjectNumber
- pDataLength: Pointer to entry of number of

transmitted data bytes
- pXMT_Data: Pointer to the address field of data to

be transmitted

This function reads the data and the initialized data length of
the transmit object specified by ObjectNumber. Further, it
checks whether a frame has been transmitted for this object.

If no transmission acknowledgments are returned by the object
the function return code 1 indicates that the last transmit job
was acknowledged by another CAN node. The return code -1
means that the last transmission acknowledgment has not
been read by the application yet.

ObjectNumber is the reference to the object returned by
CANPC_define_object. In static object buffer mode it’s equal to
the CAN identifier, while in dynamic object buffer mode it
depends on the succession of definition (see sections 4.1.2
and 4.1.3).

CANPC_read_xmt_data reads the data of an transmit object
on CAN channel 1, CANPC_read_xmt_data2 reads the data of
an transmit object on CAN channel 2.

Software description 4-73

NOTE:
This function can only be used in object buffer mode, not
in FIFO mode.

Function Return Codes:

 0: No message was transmitted
 1: Message was transmitted
-1: Transmit acknowledge overrun
-4: Timeout firmware communication
-99: Board not initialized: INIPC_initialize_board() was

not yet called or a INIPC_close_board() was done

4-74 Software description

4.6.27 CANPC_send_data[2]

int CANPC_send_data(

unsigned long Ident,
int Xtd,
int DataLength,
byte *pData)

int CANPC_send_data2(

unsigned long Ident,
int Xtd,
int DataLength,
byte *pData)

Function Parameters:

- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes to be transmitted
- pData: Pointer to the address field of the data

This function transmits a data frame with the passed
parameters on CAN channel 1 (CANPC_send_data) or on
CAN channel 2 (CANPC_send_data2).

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

NOTE:
The function CANPC_send_data can only be used in FIFO
mode, not in object buffer mode. The function
CANPC_send_data2 can only be used in FIFO mode or
static object buffer mode, not in dynamic object buffer
mode.

Software description 4-75

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-76 Software description

4.6.28 CANPC_send_remote[2]

int CANPC_send_remote(

unsigned long Ident,
int Xtd,
int DataLength)

int CANPC_send_remote2(

unsigned long Ident,
int Xtd,
int DataLength)

Function Parameters:

- Ident: Identifier
- Xtd: Identifier length

0: Standard Identifier
1: Extended Identifier

- DataLength: Number of data bytes requested remote

This function transmits a remote frame with the Identifier Ident
on CAN channel 1 (CANPC_send_remote) or on CAN channel
2 (CANPC_send_remote2). The remote frame has data length
0; however, the data length specified by the parameter
DataLength is transmitted in the DLC field of the remote frame.

The transmit request is processed through the transmit FIFO.
If the FIFO is full the application is informed by the return
value.

NOTE:
The function CANPC_send_remote can only be used in
FIFO mode, not in object buffer mode. The function
CANPC_send_remote2 can only be used in FIFO mode or
static object buffer mode, not in dynamic object buffer
mode.

Software description 4-77

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-78 Software description

4.6.29 CANPC_read_ac

int CANPC_read_ac(param_struct *ac_param)

By calling this function the application is informed about data
transmission and reception as well as about various error
conditions and bus events.

Several different CAN events can be distinguished by
evaluation of the function return code (see Table 4-8). Certain
information and parameters of interest are transferred in the
elements of the parameter structure param_struct .

Elements of structure param_struct:

NOTE:
RC1 through RC12 in brackets specify the function return
codes of CANPC_read_ac for which the described
parameter is valid. The application should not evaluate
the parameter if it comes with a different function return
code than stated below.

• unsigned long Ident:
 Identifier (FIFO mode) or object number (object buffer mode)
of the data or remote frame which was received or
successfully transmitted.

 (RC1, RC2, RC3, RC8, RC9, RC10, RC11, RC12)

• int DataLength:
 Number of received (RC1, RC9) or transmitted (RC3, RC10)
data bytes.

 The DataLength of the received frame is only valid in FIFO
mode and should not be used in object buffer mode. In object
buffer mode the data length of the CAN messages should be
predefined by the project.

Software description 4-79

• int RecOverrun_flag:
 The last received data of object Ident were not read by the PC
and were overwritten by the new data (RC1, RC2, RC9,
RC12). Only valid in object buffer mode.

• int RCV_fifo_lost_msg:
 Number of lost messages in receive FIFO (RC1, RC2, RC8,
RC9, RC11, RC12). Only valid in FIFO mode.

• byte RCV_data[8]:
 Data bytes of the received data frame (RC1, RC9).

• int AckOverrunFlag:
 This flag is set if an unread transmit acknowledge for a
transmit object is overwritten by a new one (RC3, RC10). Only
valid in object buffer mode.

• int XMT_ack_fifo_lost_acks:

 Number of lost acknowledges messages in transmit-
acknowledge-FIFO in object buffer mode due to FIFO
overrun(RC3, RC10).

 Only valid in mode object buffer configured with
TransmitAckFifoEnable=1.

• int XMT_rmt_fifo_lost_remotes:
 Number of lost jobs in remote transmit FIFO (RC4). Only valid
in object buffer mode initialized with
TransmitRmtFifoEnable=1.

4-80 Software description

• int Bus_state:
 Returns the new CAN bus status if a status change occurred
(RC5).

0: error active

1: error passive

2: bus off

• int Error_state:
Not used. Only for conformity to CANcard and CAN-AC2 (ISA)
API.

• int Can:
 Number of CAN channel (1 or 2) where the event occurred
which is defined by the function return code.

 (RC1, RC2, RC3, RC4, RC5, RC7, RC8, RC9, RC10, RC11,
RC12,RC15)

•••• unsigned long Time:
Time stamp of signaled events with a resolution of 1µs. The
timer is reset in CANPC_start_chip. (RC1, RC2, RC9, RC12,
RC3, RC5, RC8, RC10, RC11, RC15)

Software description 4-81

Table 4-8: Function return codes of CANPC_read_ac

FRC Explanation
0: No new event
1: Standard data frame received
2: Standard remote frame received
3: Transmission of a standard data frame is confirmed
4: Overrun of the remote transmit FIFO. Only with

object buffer and auto remote feature.
5: Change of bus status
6: not implemented
7: Not used
8: Transmission of a standard remote frame is

confirmed.
9: Extended data frame received
10: Transmission of an extended data frame is

confirmed
11: Transmission of an extended remote frame is

confirmed
12: Extended remote frame received
13, 14 Not valid. Only useful with CANcard API
15: Error frame detected
-1: Function not successful
-3: Error accessing DPRAM
-4: Timeout firmware communication
-6: access to an abject denied, because the object has

not been initialized with data using
CANPC_supply_object()

-99: Board not initialized: INIPC_initialize_board() was
not yet called or a INIPC_close_board() was done

4-82 Software description

4.6.30 CANPC_set_trigger[2]

int CANPC_set_trigger(int level);

int CANPC_set_trigger2(int level);

This function is a dummy function for compatibility to the
CANcard API. It has no effect on the CAN-AC2-PCI.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-83

4.6.31 CANPC_reinitialize

int CANPC_reinitialize(void);

CANPC_reinitialize reinitializes and restarts the firmware
loaded on the interface by CANPC_reset_board.

After firmware reinitialization the CAN controller should be
reset and restarted (see Fig. 4-5, 4-6, 4-7).

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-84 Software description

4.6.32 CANPC_get_time

int CANPC_get_time(uns_long_ptr time);

Function Parameters:

- time: Time (32bit) in µs

CANPC_get_time returns the 32bit time from the onboard
timer of the CAN-AC2-PCI in the parameter time. The unit of
time is µs.

The timer is reset by CANPC_reset_chip.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-85

4.6.33 CANPC_get_bus_state

int CANPC_get_bus_state(int Can);

Function Parameters:

- CAN: CAN bus number
1: CAN 1
2: CAN 2

CANPC_get_bus_state returns the current bus status of the
CAN controller of channel number Can.

If the CAN controller is in bus off state it must be reset and
started again to enable further access to the bus.

Function Return Codes:

 0: Error active
 1: Error passive
 2: Bus off
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-86 Software description

4.6.34 CANPC_reset_lost_msg_counter

int CANPC_reset_lost_msg_counter(void);

CANPC_reset_lost_msg_counter resets the counter for the
receive messages which were lost while the receive FIFO
remained full in FIFO mode.

The lost message counter is supplied in the parameter
structure of CANPC_read_ac.

NOTE
This function is not useful in dynamic object buffer
mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-87

4.6.35 CANPC_read_rcv_fifo_level

int CANPC_read_rcv_fifo_level(void);

CANPC_read_rcv_fifo_level returns the number of events in
the receive FIFO waiting to be read by CANPC_read_ac.

In FIFO mode the transmission requests of both channels are
added. In static object buffer mode only channel 2 is
considered.

The FIFO level can be reset to 0 by CANPC_reset_rcv_fifo
which clears the FIFO.

NOTE
This function is not useful in dynamic object buffer
mode.

Function Return Codes:

0 ... 255: Messages in receive FIFO
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-88 Software description

4.6.36 CANPC_reset_rcv_fifo

int CANPC_reset_rcv_fifo(void);

CANPC_reset_rcv_fifo resets the receive fifo in FIFO mode.

NOTE
This function is not useful in dynamic object buffer
mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-3: Error accessing DPRAM
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-89

4.6.37 CANPC_read_xmt_fifo_level

int CANPC_read_xmt_fifo_level(void);

CANPC_read_xmt_fifo_level returns the number of transmit
jobs in the transmit FIFO waiting to be transmitted by the
interface.

In FIFO mode the transmission requests of both channels are
added. In static object buffer mode only channel 2 is
considered.

A pending transmission request which is already entered into
the transmit buffer of the CAN controller is not counted.

The FIFO level can be reset to 0 by CANPC_reset_xmt_fifo
which clears the FIFO.

NOTE
This function is not useful in dynamic object buffer
mode.

Function Return Codes:

0 ... 255: Jobs in transmit FIFO
-1: Function not successful
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

4-90 Software description

4.6.38 CANPC_reset_xmt_fifo(void);

int CANPC_reset_xmt_fifo(void);

CANPC_reset_xmt_fifo resets the transmit FIFO in FIFO
mode.

NOTE
This function is not useful in dynamic object buffer
mode.

Function Return Codes:

 0: Function successful
-1: Function not successful
-3: Error accessing DPRAM
-4: Timeout firmware communication
-99: Board not initialized:

INIPC_initialize_board() was not yet called
or a INIPC_close_board() was done

Software description 4-91

4.6.39 CANPC_set_path

int CANPC_set_path (FAR * path)

This is a dummy function which is only necessary to provide
API compatibility to the CAN-AC2 ISA and CANcard (PCMCIA)
interface.

Function Return Codes:

 0: Function successful

4-92 Software description

4.6.40 CANPC_set_interrupt_event

CANPC_set_interrupt_event(HANDLE InterruptEvent)

This function gives a HANDLE (pointer) of a WIN32 event to
the driver which is set if an interrupt is signaled to the PC by
the CAN-AC2-PCI.

The event must be created beforehand by the application with
CreateEvent which is a function of the WIN32 API and returns
the required HANDLE. This WIN32 event can be used to
control the processing of a WIN32 process or thread.

For more detailed information about the interrupt handling refer
to Chapter 4.3.

 0: Function successful
-1: Function not successful

Software description 4-93

4.6.41 INIPC_close_board

int INIPC_close_board(void)

This function releases and unlocks the system resources
which were allocated by INIPC_initialize_board.

The function call should be applied at any possible application
exit after successful call to INIPC_initialize_board. Otherwise,
the application may have problems to get the handle to the
DPRAM a second time without system exit (e.g. applications
with LABView a.o.).

Function Return Codes:

 0: Function successful

4-94 Software description

Engineering notes:

Test program 5-1

5 Test program

5.1 About the test program
Together with the API driver software a simple example and
test program is provided called CAN_TEST.EXE. As a 32bit
console application it realizes basically the flow charts of the
operational modes described in section 4.3.

The program monitors the CAN messages on the bus, informs
about various CAN events and is able to transmit messages
on the bus by hot key.

5-2 Test program

5.2 Testing installation an communication
It is recommended to use the program also as an installation
and operation test running the interface with an loop back
cable which connects channel 1 and 2 of the CAN-AC2-PCI.
There, it should be assured that a valid bus termination is
applied. This bus termination is described in Chapter 3 and
can be set onboard by DIP switches.

First the program displays some useful information about
hardware, software and firmware version as well as about
serial number and license of the board. Otherwise, the error
number and cause is shown if the program fails.

NOTE:
Run the program from the command line window to get
the exact error code in case of a failure.

As an option the user can decide whether the CAN is
monitored by interrupt or by polling:

• ‘i’ = Interrupt

• ‘p’ = Polling

Further, the operational mode has to be chosen:

• ‘f’ = FIFO

• ‘d’ = Dynamic object buffer

• ‘s’ = Static object buffer

The program initializes the interface to 1 Mbaud and output
control conforms to CAN High Speed. If different settings are
required the source code has to be changed.

NOTE:
The display of ‘Chip is running’ states that any
initialization routines have been executed successfully.
Thus, the initialization is working correctly.

Test program 5-3

After the initialization phase the program awaits input from the
keyboard and monitors the CAN bus. Incoming events
(CANPC_read_ac) are interpreted and displayed on the screen
(e.g. reception of messages). Transmit and control requests
can be issued to the interface (e.g. transmission of messages)
using hotkeys.

NOTE:
Press ‘h’ for HELP to get an overview about the possible
hotkeys and actions.

5-4 Test program

5.3 Example code
The C source code of the program is sampled in the ‘source’
directory of the installed software. It shows exemplary the
programming of the operational modes as well as it provides
basics of the 32bit interrupt programming.

The main body, board initialization routine and receive routine
are sampled in CAN_TEST.C.

Operation mode specific routines are arranged within FIFO.C,
DYNOBUF.C and STATOBUF.C.

In INTEXMPL.C all administrative functions for the interrupt
handling are sampled. They can be directly involved into a
customer application just adding the interrupt service actions
into the interrupt thread.

NOTE:
The example program CAN_TEST is dedicated to start up
and test the proper operation of the CAN interface,
preferably with connection of CAN1 to CAN2. It may also
serve as a basis for customer programs, but it is not
suitable to realize customer specific communication
without any changes to the source code.

For more examples you can visit our homepage
http://www.softing.com or contact the technical support hotline
++49 89 456 56 337.

Error codes 6-1

6 Error codes

 This chapter defines the detailed error return codes of
INIPC_initialize_board (Table 6-1) and CANPC_reset_board
(Table 6-2) due to the variety of possible error causes while
initializing the CAN-AC2-PCI DPRAM or loading the firmware
onto it.

The error codes of most API functions are fully described in
Chapter 4.

All possible error codes are defined in the include file
CANLAY2.H. This header file is unique for all hardware
platforms. Thus, some of the error codes in the header are not
dedicated to the CAN-AC2-PCI at all.

6-2 Error codes

6.1 INIPC_initialize_board

Table 6-1: Error codes of INIPC_initialize_board

Function
return code

Error cause

FE00 No CAN device found
FE01 Internal error
FE02 General error
FE03 Time out
FE04 Driver call pending
FE05 Driver call canceled
FE06 Illegal driver call
FE07 Driver call not supported
FE08 Wrong driver DLL version
FE09 Wrong driver version
FE0A Driver not found
FE0B Not enough memory
FE0C Too many devices
FE0D Unknown device
FE0E Device already exists
FE0F Device already open
FE10 Resource in use
FE11 Resource conflict
FE12 Resource access error
FE13 Invalid access to physical Memory
FE14 Too many I/O ports
FE15 Unknown resource

Error codes 6-3

6.2 CANPC_reset_board

Table 6-2: Error codes of CANPC_reset_board

Function
return code

Description

-6 Binary data format error
-7 Binary data check sum error
-16 No card present
-17 No physical memory
-18 Invalid IRQ number
-19 Error accessing DPRAM
-20 Bad response from card
-21 SRAM seems to be damaged
-22 Invalid program start address
-23 Invalid record type
-24 No response after program start
-25 Bad response after program start
-26 PCI chip not supported
-27 Error reading PCI parameter
-38 Error initializing chip
-39 No CAN-AC2-PCI plugged in

6-4 Error codes

Engineering notes:

Glossary A-1

Glossary

OS

Operating System

AC

Application Controller

API

Application Programming Interface

CAN

Controller Area Network

CAN-AC

CAN Application Controller

CAN-AC-PCI

CAN Application Controller Peripheral Component Interface

CiA

CAN in Automation

DIP

Dual-Inline Package

DPRAM

Dual-Port Random Access Memory

ISA

Industry Standard Architecture

ISO

International Standards Organization

A-2 Glossary

PB

PiggyBack

PC

Personal Computer

PCB

Printed Circuit Board

PCI

Peripheral Component Interconnection

RAM

Random Access Memory

SAB

Siemens Advanced Board

SRAM

Static Random Access Memory

Index B-1

Index

A
Acceptance code 4-40

Acceptance mask 4-40

API

Driver concept 4-2

Auto remote control 4-48

B
Baud rate 4-32

Board initialization 4-16

Bus state 4-86

Bus termination 3-9

C
CAN controller 3-3, 4-28

CAN controller type 4-30

CAN database 4-15

CAN High Speed 3-6

CAN High Speed 4-36

CAN Low Speed 3-6

CAN_TEST.C. 5-4

Can_test.exe 4-24

CANalyzer 1-4

CANPC_define_cyclic 4-58

CANPC_define_object 4-52

CANPC_enable_dyn_obj_buf
4-45

CANPC_enable_error_frame_
detection 4-42

CANPC_enable_fifo 4-41

CANPC_enable_fifo_transmit_
ack 4-44

CANPC_enable_timestamps
4-43

CANPC_get_bus_state 4-86

CANPC_get_time 4-85

CANPC_get_version 4-29

CANPC_initialize_board 6-2

CANPC_initialize_chip 4-32

CANPC_initialize_interface
 4-46

CANPC_optimize_rcv_speed
4-56

CANPC_read_ac 4-78

CANPC_read_rcv_data 4-70

CANPC_read_rcv_fifo_level
4-88

CANPC_read_xmt_data 4-72

CANPC_read_xmt_fifo_level
4-90

CANPC_reinitialize 4-84

CANPC_reset_board 4-27, 6-3

CANPC_reset_chip 4-28

CANPC_reset_lost_msg_coun
ter 4-87

CANPC_reset_rcv_fifo 4-89

CANPC_reset_xmt_fifo 4-91

CANPC_send_data 4-74

CANPC_send_object 4-66

CANPC_send_remote 4-76

B-2 Index

CANPC_send_remote_object
4-60

CANPC_set_acceptance 4-39

CANPC_set_interrupt_event
4-93

CANPC_set_mode 4-35

CANPC_set_output_control
4-36

CANPC_set_path 4-92

CANPC_set_serial_number
4-31

CANPC_set_trigger 4-83

CANPC_start_chip 4-57

CANPC_supply_object_data
4-62

CANPC_supply_rcv_object_da
ta 4-64

CANPC_write_object 4-68

CAN-PCI interface 1-1

Connector pinning 3-8

Cyclic transmission 4-58

D
Data length 4-78

DC/DC converter 3-4

DIP switch 3-4, 3-9

DPRAM access 4-25

Driver version 4-29

D-SUB 9 3-8

Dynamic object buffer mode
4-5

DYNOBUF.C 5-4

E
Environmental conditions 3-1

Error codes 6-1

CANPC_initialize_board 6-2

CANPC_reset_board 6-3

Error frames 4-42

Exit board 4-22

F
FIFO mode 4-17

FIFO mode structure 4-4

FIFO operation 4-15

FIFO.C 5-4

Firmware download 4-27

Firmware version 4-29

Functional scope 1-3

G
General description 3-3

H
Hadware

General description 3-3

Hardware

CAN controller 3-3

Layout 3-5

Physical bus interface 3-6

Structure 3-2

Transceiver 3-3

Hardware description 3-1

Bus termination 3-9

Environmental conditions 3-1

I/O connector 3-8

Hardware installation 2-15

Hardware version 4-29

Homepage 5-4

Index B-3

I
I/O connector 3-8

Identifier 4-78

Implementation 4-16

INIPC_close_board 4-94

INIPC_initialize_board 4-25

Installation 2-1

Installation test 2-16

Installed files

Windows 2000/XP 2-4

Windows 95 2-12

Windows 98/ME 2-4

Windows NT 4.0 2-9

Intempl.c 4-24

Interrupt 4-6, 4-19, 4-23, 4-93

Interrupt events 4-23

Interrupt programming 4-24,
 5-4

Interrupt service thread 4-24

INTEXMPL.C 5-4

Introduction 1-1

J
Jumper setting 3-7

L
Lost messages 4-79

O
Object buffer 4-15, 4-46

Object buffer mode 4-19

Object lists 4-5

Object number 4-52

Object type 4-52

Operational mode

Static object buffer 4-9

Operational modes 4-3

Comparison 4-15

Dynamic object buffer 4-5

FIFO 4-3

Optocouplers 3-4

Output Control Register 4-36

Overrun 4-15

P
Parameter structure 4-78

PC interface 1-3

Philips PCA82C251 3-3, 3-6

Phillips SJA1000 3-3

Physical bus interface 3-6

Piggyback 3-4, 3-6

Jumper setting 3-7

Polling 4-5, 4-9

Prescaler 4-33

Q
Quick start 2-2

R
Receive events 4-3, 4-6, 4-11

Receive FIFO 4-3, 4-88

Receive object list 4-6

Receive objects 4-47

Registry keys 2-6, 2-7, 2-8

Release Notes 1

Remote frames 4-7, 4-12

S
Sampling point 4-33

Scope of delivery 1-6

B-4 Index

Shielding 3-8

Software description 4-1

Software installation 2-3

Windows 2000/XP 2-3

Windows 95 2-11

Windows 98/ME 2-3

Windows NT 4.0 2-7

Static object buffer mode 4-9

STATOBUF.C. 5-4

Support hotline 5-4

Synchronization jump width
4-33

System requirements 2-1

T
Termination resistance 3-9

Test program 5-1

Time segment 1 4-33

Time segment 2 4-33

Time stamp 4-80

Transceiver 3-3

Transmission request 4-3,
4-10

Transmission requests 4-5

Transmit acknowledges 4-3,
4-6, 4-44

Transmit FIFO 4-3, 4-90

U
Uninstall support 2-14

W
Windows 2000/XP 2-1, 2-3,

2-15

Windows 98/ME 2-1, 2-3, 2-4

Windows 9x/ME 2-15

	CAN-AC2-PCI
	Contents
	Preface
	About this manual

	Introduction
	About the CAN-PCI interface
	Scope of application
	PC interface
	CANalyzer

	Supported systems

	How to install CAN-AC2-PCI
	System requirements
	Quick start
	How to install the API driver software
	General
	Windows 98/ME, Windows 2000/XP
	Windows NT 4.0
	Windows 95
	Uninstall support

	How to install the hardware
	How to test the installation

	Hardware description
	Environmental conditions
	General description
	Physical bus interface
	I/O connector
	Bus termination

	Software description
	About the CAN-AC2 API
	API driver concept
	Operational modes of the interface
	FIFO mode
	Transmission request
	Receive events and transmit acknowledges

	Dynamic object buffer mode
	Transmission requests
	Transmit acknowledges
	Receive events
	Remote frames

	Static object buffer mode (only for 11-bit identifiers)
	Transmission request
	Transmit acknowledges
	Receive events
	Remote frames

	Comparison FIFO to object buffer mode

	Implementation
	Board initialization
	CAN initialization
	FIFO mode
	Object buffer mode
	Exit board

	Interrupt processing
	Interrupt events
	WIN32 interrupt programming

	Description of the API functions
	INIPC_initialize_board
	CANPC_reset_board
	CANPC_reset_chip
	CANPC_get_version
	CANPC_get_serial_number
	CANPC_initialize_chip[2]
	CANPC_set_mode[2]
	CANPC_set_output_control[2]
	CANPC_set_acceptance[2]
	CANPC_enable_fifo
	CANPC_enable_error_frame_detection
	CANPC_enable_timestamps
	CANPC_enable_fifo_transmit_ack[2]
	CANPC_enable_dyn_obj_buf
	CANPC_initialize_interface
	CANPC_define_object[2]
	CANPC_optimize_rcv_speed
	CANPC_start_chip
	CANPC_define_cyclic[2]
	CANPC_send_remote_object
	CANPC_supply_object_data[2]
	CANPC_supply_rcv_object_data[2]
	CANPC_send_object[2]
	CANPC_write_object[2]
	CANPC_read_rcv_data[2]
	CANPC_read_xmt_data[2]
	CANPC_send_data[2]
	CANPC_send_remote[2]
	CANPC_read_ac
	CANPC_set_trigger[2]
	CANPC_reinitialize
	CANPC_get_time
	CANPC_get_bus_state
	CANPC_reset_lost_msg_counter
	CANPC_read_rcv_fifo_level
	CANPC_reset_rcv_fifo
	CANPC_read_xmt_fifo_level
	CANPC_reset_xmt_fifo(void);
	CANPC_set_path
	CANPC_set_interrupt_event
	INIPC_close_board

	Test program
	About the test program
	Testing installation an communication
	Example code

	Error codes
	INIPC_initialize_board
	CANPC_reset_board

	Glossary
	Index

